-A262 510

AD- | N
Hllﬂn HERREREE - L @

AFIT/GOR/ENS/93M-14 .ELECTE

INCLUDING MAXIMUM SUSTAINED
WIND SPEED IN A TIME SERIES MODEL
TO FORECAST HURRICANE MOVEMENT

THESIS
Timothy B. Mott, Captain, USAF

AFIT/GOR/ENS/93M-14

Reproduced From
Best Available Copy

7 93-0702
20000929 I3 N MNIRRRREN, suey

Approved for public release; distribution unlimited

93 4 02 171




Acceslon For

|

NTIS CRA&I @

o DTIC TAB B

THESIS APPROVAL Unannounced a
‘ Justification

_ By' ,
Distribution }

Availability Codes

SN Avad andfor
Dist Special

R

INCLUDING MAXIMUM SUSTAINED WIND SPEED

STUDENT: Captain Timothy B. Mott CLASS: GOR-93M

IN A TIME SERIES MODEL TO

FORECAST HURRICANE MOVEMENT ; |

DEFENSE DATE: 4 March 1993 B M\;
- . s
| | @9&
COMMITTEE: - o
Name /Department - Signature
Advisor Dr Edward F. Mykytka/ENS M% \
‘Reader Lt Col James T. Moore/ENS / . % dt1e

4




AFIT/GOR/ENS/93M-14

INCLUDING MAXIMUM SUSTAINED WIND SPEED
IN A TIME SERIES MODEL TO

FORECAST HURRICANE MOVEMENT

" THESIS

Presented to the Faculty of the School of Engineering
| of the Air Force Institute of Technology:
| Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

Timothy B. Mott, B.S.

- ' Captain, USAF

March 1993

Approved for public release; distribution unlimited




Preface

The nurpose of this research was to modify Dr. Thomas F. Curry’s time series model for
predicting hurricane landfall by including maximum sustained wind speed as an explanatory
variable. The focus of this research was on improving the forecasting ability of Cnrry’s model
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Dr. Curry for his continuous assistance and guidance, and for sparking my interest in this topic.
Thanksgare also added to Mr. Colin McAdie of the National Hurricane Center for procuring data
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| T. B. M.
The Air Force Institute of Technology
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" Techniques for applying time series fundamentals to forecasting hurricane movement are
vth’oroughly examined in this research The objectives are- (l) to modify Dr. Thomas Clm'y’s |
threshold autoregressive time series model to improve its abilitj to forecast hurricane movement,
(2) to forecast the maximum sustained wind speed for a hurricane, and (3) to identify if wind
speed shdﬁld be included as an expianatory variable to aid in forecasting hurricane movement.

Eleven different models to predict the latitude, longitude and maximum sustained wind
speed are compared and contrasted with Curry s bivariate time series model. The results showed
the modifications allow signiﬁcant forecasting improvement to Curry’s model in the 6-, 12-,
24-, 48; and 72-hour forecasts. The model recommended by this research shows a significant
improvement in mean and v#riance of the overall forecast errors.

One of the emerging interests of the hurricane forecasting community is the abiﬁty to
predict the intensity of a storm. An added feature of the recommended model is that it would
predict the maximum sustained wind speed of the 72-hour forecast with mean error of less than

4 J‘mw per hour. This makes the recommended model even more valuable to the hurricane
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1. Hurricane Forecasting

This research will focus on predicting hurricane movemént using a mathematical model,
specifically a time series model. Models such as this can aid the hurricane forecaster in
predicting whefe a hurricane may hit a coastline. |

‘Andrew and Hugo; two hurricanes that hit the United States coastline in the Iast few years
caﬁsed billions of dollars in damages and many deaths. It is an occurrence that is all too
famiﬁar, especially for people living in the areas that are in most danger. They know that when
a hurricane is h&aded their way, it is time to board up the hoﬁse and prepare to evacuate. The
more warning time they have, the better chance they héve to save their lives and protect their
pfoperty They need axiaccurate forecast of where the hurricane is going to strike.

For example, as hurricane Hugo approached South Carohna authormes never expected

| the humcane to lnt the coast as soon as it actually did, which prevented timely evacuation. In
all, Hugo took 85 lives and caused tremendous amounts of damages. (16:A2) Itis possnble that
some of these hv&s could have been spared with more time to evacuate

In the Florida Keys, a timely forecast of ar approaching hurricane means the difference
between survival and loss. Authorities determine that because of the one road system that

connects the keys to the mainland, it would take "at least 30 hours to clear the area.” (16:A2)
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1.1 Hurricane Forecast Models

'fremendous amounts of research have gbne into the prediction of where a hurricane will
hit land with little improvement over the last thirty years despite advancements in computers and
weather monitoring devices. The majority of forecasting models use mgteorological informaﬁon
to predict how a storm will steer. Others use simulation and statistical information to get a best |
guess of a storm’s path.

The mafor United States agency involved in hurricane movement is the National
Hurricane Center (NHC) in Coral Gab'es, Florida. While tracking an active hurricane, the NHC
issues forecasts at least every 6 hours and predjcts storm m ovement for lead times up to 72 hours

(4:3). They use several computer models to analyze storm movement (11:522). The

experienced and skilled forecaster would combine the output of these models with other
accumulated daﬁ and "using his best judgement issue a forecast” (4:5-6). Still many feel that
the hurricane forecasts are not timely enough or accurate enough to guarantee the safe evacuation
of large, densely populated areas. In fact "after 30 years of advances in weathersaiellites,
computer forecasting models, and basic research, forecasters had reduced the errors in predicting
the paths of hurricanes by just 14%" (7:917). This is not encouragixig when facing the
destructive capabilities of a hurricane like Andrew.
1.2 Hurricane Forecasting with Time Scries Models

Dr. Thomas Curry, who has done some of the most recent work in improving curreat
forecasting procedures, feels that "the crux of the problem rests with the inadequacy of the
present forecasting procedures” (4:2). He goes on to explain that in 1985 the National Hurricane

Center (NHC) was using forecasting packages and computer systems which were thought to be




-

outdated and slow. Their 72-hour forecasts generally took two to three hours to develop with.
an average forecast error of 435 nautical miles. This error leaves populated areas with the costly
decision tv either evacuate or take the chance that the hu.ricane will miss their area. Greater |
‘accuracy is required in predicting hurricane landfali in order to msure timely evacuation.

Through the use of a nonlinear time series _forecasting model, Dr. Curry was able to
show that the landfall of certain types of hurricanes and tropical storms “can be accurately
predicted by modeling the storm track as a bivariate (latitude and loﬁgitude) fifth-order
autoregressive process” (4:v). His model ﬁrodﬁced forecasts which were sjightly better than the
NHC’s official forecast. B

The objectives of this research are: ~ (1) to modify Curry;s threshold autoregressive time
séries model to improve its ability to forecast all types of hurricanes, (2) to forecast the
maxinium sustained wind speed for a hurricahe, and (3) to include past maximum sustained wind_

speeds as a explanatory variables to aid in forecasting hurricane movement.




1. Theoretical Development and Application

Predicting the movemeﬁt bf a hurﬁcane isa difficult assignment. Nature does not assist
the forecaster by following a'set of rules or timétables. Thu#, it is up to the forecaster to use
the information airaiiable to best predict the destructive path of a hurricane.

| Curry stated that Dr. William G. Lesso and T. W. Freeze determined that through the
use of past hurricane tracks, some information can be exﬁacted to aid in predit;ﬁng hurricane
movement (4:11). Tﬁe Ldsso and Freeze model uses only the current posi'tion report to forecast
the future movement of a hurricane. Curry expahded this work in two ways: (1) incorporating
a time series model which éllows past position reports to be used in developixigta forecast and
(2) allowing the modgl parameters to vary over location, in order to more accurzi‘{tcly rﬁodel the
distinctive, position-dependent motion of a hurricane. |

This chapier describes the different typ&s of time series models and how they apply to
forecasting hurricane movement. The following areas will be covered:

® Univariate Autoregressive Moving Average (ARMA) Models

Multivariate Autoregressive Moving Average (MARMA) Models

Threshold AR Models

Combining Cross-Sectional and Time Series Data

Summary of Curry’s Methodology
® Research Limitations
In the process of developing these areas, Curry’s work will be developed in context and a

number of possible time series models will be proposed for forecasting hurricane movement.

. - . : [




2.1 Univariate Autoregressive and Moving Average (ARMA) Models -

Time series modeling assumes that history repeats itself and its methods aim at
discovering the past (historicél) péttem of events so they can be extmﬁdlate& to forecast the
future (8:363). Time series forecasting techniques are used to i)redict fuﬁxr_e values of a set of
ordered obsen}ations where the order of the obserQation is as crucial as the observation itself
(9:30). In other words, information from a time series woulci be Ios; if the»bbservations were
mken out of the order in which they were observed. The standard notation fbr é ﬁme series will
be used in this research, in which the time order of an observation is conventionally denoted by
a subscript. Accordingly, the general observatioh is wﬁtten as Y, meaniné tﬁe t* observation
of a time series. This implies that the preceding observation is Y,, and the subsequent
observation is Y,,,. (9:30) |

Time series models are used to express forecasts as functions of past values of the time
series. The goal in time series forecasting is to find the functioﬁ that best describes the nature
of the observations. One approach to modc''ng time series is called the Autoregreséive Moving
Average (ARMA) models. An ARMA model represents the observation at time ¢ as a function
of previous observations and & random shock, e, In an ARMA model, the series of random
shocks is assumed to be "whiternoise," which has the statistical property of being distributed
Normally and independently with a zero raean and constaﬁt variance.

The first part of an ARMA model is the autoregressive (AR) processi the general

equation, that best defines an AR process of order p, denoted AR(p), is:
Yo = O+, Y+, Y, o4 . 4O Y, te, (1)
where C is a constant and ¢, is the parameter which describes the weight given to the i* previous

5
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observation fbr i =1,..,p. The AR proéess indicateslthat future expected values are linear
combinations of p past values. That is, in an AR process of order p, the expected observation
at time t, E(Y), is a linear combination of the p previous observations, Y,,...,Y,,. The order
of an AR model is dependent upon the nature of the process being modeled. Specifying a
suitable order of an AR model and thus .which' past values should be utiiized is crucial for
: obtaining accurate forecasts. In this research, determining the order of the model will refer to
the specification of AR models. | | |
The second part of an ARMA model is the Moving Average (MA) process which is

characterized by a finite persistence (9:61). MA models are different from AR modcls as they

assume that the expected observation at time t, E(Y), is a linear combination of the previous

model errors, €., ...,&, The general model equation for a MA process of 6rder q, denoted
MA(q), is:

Y. = 06700 ,-0 010000 (2)
where 6, is the parameter which describes the weight given to the error of the i* previous model
error fori = 1,...,q.

An ARMA model is a mix of the autoregresSive and the moving average models. The

general form of an ARMA model, of order (p,q), v is:

Ve = Cr9Ve 1 +dsye ot o by pre 0.0, ,-0,e, ,-. . . -0.e, (3)




Makridakis points out that the "advantage of an ARMA scheme is that it includes différenf AR
models and uses whatever error remains in an MA equation in attempting to further improve
forecasting.” (8;229) An ARMA model will allow more capability in reducing the modei errors
to randomness than either AR or MA models alone.v '

Choosing the abpropriate order (p,q) of the ARMA modél can be difficult since there is
no well-defined sclection criteria. This can be ovurcome by following the guidelines of the Box-
Jenkins methodology, which help make ARMA models relevant and ap;;licable in real life
sitpations (8:230). | |

Next, this methodology will be summarized briefly, then three important topics relevant
to this research will be addressed: (1) model specification, (2) stationarity and (3) predicting
hurricane movement with a univariate ARMA model. |

2.1.1 Box-Jenkins Methodology The ﬁrst‘ step in the Box-Jenkins method t is to

postulate an order for an initial ARMA model. It is possible to identify a tentative ARMA

model by examining the autocorrelation function of the time series, which measures the strength

of the relationship between observations in the series that are the same number of time lags apart,
and its partial autocorrelation function, wﬁich shows the relative strength of the relationship that
exists for varying time lags (8:2<.). Once the model has been postulated, the next step is to
estimate the parameters of this tentative model. This is done with standard estimation methods
such as maximum likelihood estimation or least squares estimation. After the model parameters
have been estimated, the residual differences between the observed time series values and those
estimated by the model should appear to be white noise for the fitted model to be "adequate”.

This can be determined by examining the autocorrelation function of the residuals. If the

S §T -




residuals do appear to be white hoise, then the model is considered adequate. Otherwise, one
must return td the model Iidentiﬁcation stage, select. a different order for the model_ and step
through the procedures again (8:245-250). Once the model has been shown to be adecjuate, the
analyst should then look for redundant parameters. Finally, once these are eliminated, the
resulting model! can be used for forecasting purposes. |

In his dissertation, Curry discus§es ARMA models but limité his methodology to
autoregressive models only. He imbliéitly incorporates possible moving average components by
noting that movmg average models can~be’ approximated by truncated finite AR models. This
decision is necessitated by the small number of observations within a hurricane track, since these
short tracks make the MA parameters difficult to estimate. Consequently, Curry suggests ihat
inclusion of an MA parametef is more complicating than helpful. Since we concur with his
assessment, only autoregressive models will be addressed from this point on.

2.11.2 Model Specification As in regression analysis, one concern in time series‘model-
building is specifying the order of the model, or determining which explanatory variables (i.e.,
previous observations) ought to appear in the model and which ones should ho' Pindyck and
_ Rubinfeld explain that there are trade-offs which are encountered in determining the explaﬁatory
variables. Their analysis shows that the cost of excluding a variable which should appear in the
model is bias and inconsistency, while the cost of adding one or more irrelevant variables is loss
of efficiency. They also point out that with a lasge number of observations, the loss of degrees
of freedom in adding irrclevant variables is uilikely to be serious. The analyst must decide what
- is important in terms of the bias-efficiency tradeoff, with the result dependent upon the

objectives of the analysis.




An initial estimate of a model’s appropriateness can be obtained by examining the amount
of variance in the observed time series that is explained by the model. Two of the common
measures of this are the mean squared error (MSE) and the coefficient of multiple determination

(R?). MSE measures the error that is not explained by the model; it is calculated by:

MSE = ;"; ¥y 28,)” | (4)
e

where n is the number of observaiions for which forecasts are developed using the. model, Y, is

the actual i* observation, Yf, is the forecz‘rt of the i* observation and b is the numbef of

dependent variables in the model. Minimizing the MSE appears to be one reasonable objective

to determine model appropriateness since it a;nccounts for both bias and efficiency (15:131). R?

measures the proportionate reduction of the éotal variation in the dependent variable associated

with the use of the particular set of dependent variables; it is calculated by:

(5)

The highér the R; value the more variance is explained by the model. These two measurements
give a good idea of the appropriateness of the model. Both MSE and R* are usually computed
in relation tb the set of observations in developing estimates of the model’s parameters.

In the case of comparing different forecasting models, the model that does the best job

forecasting the observations within a separate test set shoula be the one chosen. One procedure
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to compare forecasting models is to compare the average and standard deviation of the forecast

errors when forecasting on the test set. In addition, a more accurate way of measuring actual
predictive capability of a model is to use the model to predict each nbservation in the test set and

then to calculate the mean of the squared prediction errors, to be denoted by MSPR:

MSER = Y, (Yeve)r (8)

" where n 1s the number of forecasts, Y, is the actual i* observation and Yf, >is the forecast of the

i* observation. The MSPR gives a good indication of how well the selected regression model

will predict in the future, since it increases more rapidly than the mean error when mahy large

errors are present. In the case of multiple models exhibitihg statistically equivalent results,
meaning the forecast enof average, standard deviation and MSPR of the models are equivalent
to some desired coﬁﬁdence level, the model with the minnnum number of terms would be the
one of choice.

2.1.3 Stationarity In 'det;eloping models for time series, it is impdrtant to know

whether or not the underlying stochastic pr&:ess that generated the series can be assumed to be

ﬁvﬁmt ‘o;/er time. In particular, we usually assume that ihis means the series mean, variancé
and autocdrrelation structure do not change 6v€r time. If the mean or variance changes over
time (i.e., is nonstationary),
it will often be difficult to represent the time series over past and future intervals of time
by a simple algebraic model. On the other hand, if the process is fixed in time (i.e., is

stationary), then it is possible to model the process via an equation with fixed coefficients
(iinear in coefficients) that can be estimated from past data. (15:497)
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Thus, td accurately esﬁmate parameters for an ARMA model, the time series must be sthtionary.
Otherwise, the ability to accurately forecast future observaﬁ_ons could be drastically diminished.

A time series which is nonstationary in the mean can sometimes be ﬁansformed into a
stationary series if it is differ¢ncéd one or more times. Differencing is subtracting the value of
the pre\;ious observation from the currént (time ,t) observation, and doing this for every

observation in the time seri&s,.i.e. forming for t = 2, 3, veey I
We = ¥V~ Ver = AV, v (7)

Thus if we want to build a time series model to forecast values for a nonstationary (in the mean)

series, we can (hopefully) difference the series until stationary, construct a model for this

differenced series, 1.°ake forecasts for this series, and then remove the eﬁ"ect of the differencing
in the model and its forecasts to develop forecasts for the original series.

Unfortunately, even if a serics is stationary m its mean, it may not be stationary in its
variance. In practice, most time series can be made stationary in mean and variance by
differencing, but when this is not the case, there is another simple transformation which may be

applied to such processes to make them stationary in the larger sense. *In geneial, whenever the

variance ot a time series changes as the level of the series changes, the series can be made

stationary in the larger sense (in both mean and variance) by log-transformation and then
differencing. Log-transfonnétion and differencing results in a constant variance.” (9:52) In
conclusion, a series which is not stationary in its mean and/or variance may lead to incorrect

inferences in the analysis.
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2.1.4 Hurricane Forécasting Using Univariate ARMA Models In forecasting
hurricane movement, univariate AR models could be used in forecasting latitude and longitude
coordinates 'separately, although these would not account for any dependence between them.
(Curry assumed there wasa sign'_iﬁcant dependence between latitude and longitude and, therefore,
fit bivariate models only.) iffn_ay be beneficial to fit two separate univariate models for latitude
and ! . gitude to use as a basi$ fof comparison with other, more complicated, models. These

. univariate models would have the form:

.LAc =&y, 1 LA+ LAt 4y LA, Ve, (8)

LO, = 0,110, 1+, 210 o+ . . . +&; [LO,_te,, (9)

where LA, and LO, afe the latitude and longitude at time t, the e’s are the mode! errors, and the
¢’s are appropriate AR model parameters.
2.2 Multivariate ARMA (MARMA) Models

MARMA models arc used to apply time seﬁes methods where additional variables are to

be included in a + odel to provide additional information to be used in developing a forecast.

: ———-Tnere are two reasons for analyzing and modeling mliltiple series jointly: (1) to understand the

dynamic relationships among them and (2) to irnprove accuracy of forecasts, since, when there
is information on one series contained in the historical data of another, better forecasts can result
(21:802). Next, two types of MARMA models that are referred to in the literature will be
distinguished: vector ARMA models and a subset. of vector ARMA models identified as transfer

function models.
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2.2.1 Vector ARMA Models This usefil class of models allows for the application of

time series methods to jointly forecast multiple time series using the past histoq of these series
as predictors. Vector ARMA models allow feedback relationships amo.ng'the multiplc; series,
where the forecasts of a series can depend on the forecasts of other series. The parameter
estimation techniques for vector ARMA models can be quite complex, particularly thh the
hurricane track data used in this research. Accordingly, only the subset of vector ARMA models
called transfer functions were uﬁlized in this research. ‘

2.2.2 Transfer Function Models Transfer function models are a unique variation of
vector ARMA models in which time series naethbds are applied to forecast a single de endent

series with additional series included as predictors. The general transfer function mode’ may be

written as
Yo = 8,Y, 148,Y, o+, . 48, Y, 40X, (-0 X, p 1= 0K, p g

+ ozc-c'c1zt-c—1" v "cmzt-c-m
+ . .
+, C (10)
+, .
*EoWeaEaiWe g v 8§ Hgy
re, .

where Y, is the dependent variable, and X, Z, and W are the independent variables. Ifb, ¢ and o

d are greater than zero, the corresponding independant variables (X, Z or W) will be leading
indicators of Y,. The purpose of transfer function methodology is to facilitate determination of
r,s, b, ¢, m dand v and the estimaﬁon of the parameter values.

When suitably arranged, a | transfer function model possesses at best, a rriangular
relationship which allows for partial feedback between responses. Box and Tiao describe this

triangular relationship in an example in which "Y depends only on its own past; X, depends only
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on its own ‘paét and on the present and past of Y; X, depends on its own bast and on the present
and past of Y and‘X,; and so on.” (21:802) This means that when there is a feedback
relationship between the variables such _that, Y depends on the past of X, 'and X, depends.on the
past of Y, a transfer ﬁxncﬁon cannot account for the feedback; however, another type of vector

| ARMA model could. B
| Curry wénted to account for a dependence between latitude and longitude, but he felt a
feedback relationship wﬁs not necessary. ‘In other words, hé did not use predicted values of
latitude or longitude as predictcr variables for each other. Instead, he accounted for this
dependence by using two separate transfer functions; one for latitude and one for lonéitude.
* Curry’s basic models express la.titude at time t (LA as a function of past latitude and longitude

reports, and longitude attime t (LO) as a funcﬁon of past longitude and iatitude‘reports as well:

LA, = &y, LAy +yy 2 LA %o o +Gy, LA,
+

+ &12,1L0; 1 +y5,,L0, 5% o o 4y, LO,, (11)
+ Cl
LO, = ¢yy,1LA, 3402y 2 LA % o o 0y, LA,
oty 1 L0, sy 2 LO; p . v 40y, LO, (12)

+ (;'2

where Cl }md Czareconstants and the ¢’s are thé m@el parameiérsr.

_ .~ According to Curry, this model can be expressed as a multivariate linear model wherein
the ¢’s can be estimated via multivariate least squares (4:63-64). He goes on to state that
"although they are biased, the least square parameter estimates converge in probability to the true
parameter values.” (4:64) A variation to Curry’s model would include wind spwd‘ (WS) as a

predictor while keeping both latitude and longitude in the model. This model would be:
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LA, = §yy 1 LAy +yy LA, 5+, o 4y LA,
* §12,1L0p14915,2L0, 2%+ -+, (L0, ¢ (13)

+ 043, WS, 1 +dy5, WS o .

+ (:'1

+oy5, WS,

- LOp = §yy,1LA0 1ty 2 LA o+t LA,
+ §25,1L0, 1 +23,2L0; 5+ .+« +&y;, L0, o (14)
+ 23,1 WS¢y *23, WS¢ 2% -« o +¢23, WS, ‘

+ C’2

WSy = §31,108, 141, 2LA, o+ o 4y, LA,
+ ¢ + 4'¢ .

32,1L0¢-14®32,2L0, 2+« « « ¥93;, L0, o (15)

+ &33,1 WS, 1453, WS, 2% . o« 40, WS,

+ C'3

where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents
the maximum sustained wind speed at time t and C,, C, and C, are constants,

Wind speed would be added based on the advice of both Curry (4:109) and Piké
- (14:101), a resear;:h meteorologist from the National Hurricane Center. Pike states that
"pfeliminary tests confirm that the winds are superior to heights (atmospheric pressures at
different altitudes traditionally used in predicting tropical storm steering) as steering predictors
(of tropical storms)."” (14:103) It is expected that the inclusion of maximum wind speed as an
explanatory variable will decrease forecast error. Maximum wind speed is used in order to keep
the forecasting models as simple as possible since it was decided that other measures of a
hurricanes winds, including its "wind component vectors” (3) would be rather complicated to
incorporate into a model and would also be cumbersome to use.

Unfortunately, there are two unique complicéting factors that do not allow these types of

models to be simply estimated or fit. | First, the set of historica! time series of hurricane track -
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data which will be used to fit a model is not a siﬁgle contixiuous time series but l_'athér is a
collection of multiple time series (i.e., separate hurricane trac_ks) referred to as cross-sectional
time series. As will be seen, this complicates procedures for estimating the ;;arameters for the
models. Second, to overcome possible large errors in predicting hurricane movement, Curry
allowed his model coefficients to change as a storm moves. This is done by estjmating the
nonlinear motion by a number of linear &stimate_s withinl the context of a threshold AR model.
These complications will be addressed in the next_two sections. A
2.3 Threshold AR Models | |

The movement of hurricanes is not by nature a random phenomenon, but rather,
burricanes "tend to be steered by the large atmospheric forces in which they afe embedded."
(11:352) This steering can be seen in Figure 2.1, which shows four typical hurricane tracks over

the North Atlantic basin. Notice tbat the storms

tena to move first to the west and north, and then
turn more to the north and east as they move
progressively northward. Curry developed his
model so that the model parameters could change
| as fhe storm rinroved northward in order to account

for this type of movement. He accomplished this

by using a threshold AR model.

Figure 2.1. Four Typical

. : Hurricane Tracks Over the North
A threshold AR model is basically a Atlantic Basin.

piecewise linearization of a nonlinear process. It

accounts for the motion of the hurricane by
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allowing the parameters to change as the storm crosses latitude thresholds. This allows the

forecast parameters to remain constant until the next threshold is crossed, since the nature of the

storms is believed to change slowly (4:23). By "segmenting the North Atlantic into latituge

bands" (4:107), and estimating the parameters for the separate time series in each band, t_hé

motion of a storm can be embodied by "piecing"' together the models in thé separate bands. The

latitude bands that Curry chose are: 10-15N , 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

40-45N in degrees latitude (see Figure 2.2). Accordingly, Curry develops seven separate and

unique models, one for each latitude band (4:113).

In this research, a threshold model will be constructed by taking all the position reports

. for each storm which lie within a latitude band and estimating the AR parameters for the model

pc',g;?g
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Figure 2.2. The Latitude Band for the

Threshold AR Mpdel.

within that band using only those observations
énd the five most previous position reports.
Using the previous five position rep6m
ensures that an AR model of order less than
or equal to five would be appropriate to be
used immediately once a storm crbsses a
threshold. If there was no overlap (i.e., if
the five mbst previous position reports were
not included), it would not be apbropn’ate to

develop forecasts immediately when a storm

moves into a new 'regibn. For example, using an AR(5) model constructed for that latitude band,

forecasts could not be developed until five position reports had been obtained in that band.




“Using a five position report overlap allows forecasts to be issued immediately when a storm
moves into that region using the model éonmmed for that latitude band . |
A threshold AR model forecast of a hurricane’s next position (6 hours in the future) will

thus be made by using the time series model for latitude band within which the most recent

position report lies. Once this forecast is calculated, the next step ahead forecast (i.e., for 12

hours ahead) is made using the time series model for the latitude band in which the first forecast

- lies. This model will be the same as the one used for the first forecast unless the first forecast
crossed a "threshold.” Then, the model for the new latitude band would be used. This process
is repeated until the required number of forecasts are obtained.

The threshold AR model thus allows for the AR parameters to change as the storm moves
whilé still allowing the forecasts to be functions of the past values of the storm”s positions. The
evidence supporting the use of a threshold model as described by Curry seems reasonable and
justified. ~Accordingly, this threshold approach will be utilized in this thesis with the same
latitude bands. |

2.4 Combining Cross-sectional and Time Series Data

In the normal application of time series analysis, there are a large numberof time-ordered

observations of the series of interest and, using these observations the goal is to explain and

forecast the future values of that series. By examining the patterns, trehds, or persistence of the
past observations, information is gained on future values. However, the life of a particular
hurricane is short, and the goal is to use the movement history of all past storms to predict the

movement of a current storm. According to Pindyck and Rubinfeld, -
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a pfactical problem of some importance occurs when observations are available for
several individual units (hurricanes) over a period of time. Occasionally sufficient
observations will not be available to estimate either a time series (dealing with
correlations between time periods) or cross-section (dealing with correlations between
individual units) equation, suggesting that some method of combining the data (of
individual hurricanes) be used. The process of combining cross-section and time series
data is pooling. (15:252-253) '

It seems appropriate to use information from past hurricane tracks to forecast a current
hurricane’s movements. Accordingly, we are not dealing with one long, continuous time series
but, rather, with a collection of many smaller time series driven, we assume by a common
underlying natural process; i.e., we assume hurricanes behave or move according to a common
natural process.

The problem lies in having to combine the necessary information from many past

hurricanes to forecast the movement of a single current hurricane, while also incorporating

information about the présent storm’s history. One complication arises in estimating the model -

parameters, since many observations are needed to keep the variance of the parameter estimates
smé_ll. While it seems obvious that this could be accomplished by combining the hurricane tracks
"so as to maximize the number of observations" (4:60), it produces quite a unique problem. To

7 illustrate this problem , we take two tracks, each with four observations:

Track, = [LA, ,,LA, ,, LA, ;, LA, ,] (16)

Track, = [LA,,,, LA, ;, LA, 5, LA, ,) (17)

If we combined the tracks by appending Track, at the end of Track,, we would obtain

Combined [LAI,I' 1'2,LA1,3,LA1'4:LA2’51LA2,61LAz,-]lLAz,a] (18)
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This would appear to yield a single track containing eight observations to work with. It would

seem appropriate to fit a time series model to this set of eight observations via traditional time
series methods. Unfortunately, this would not be suitable since the first four observations are
independent from the last four because they arise from two differert storms. Traditional methods
would assﬁme that the first four observations are -related to the last four.

| The method that Curry used to overcome this obStacle is to estimate the parameters using
the SPSS multivariate linear regression procedure with "the pairwise deletion option” (4:60).
This results in the covaﬁance matrix having a different number of pairs for each off diagonal
element, which in turn has a minor effect on the confidence interval for the associated -
co'efﬁcient. |

There are few other published results relating to the estimation of AR parameters when

dealing with pooled cross-section and time series data. Azzalini (1991) provides one exception
as he develops a "pearly unbiased estimate of the AR(1) parameter” for dealing with pooled data
in a time series (Azzalini:273). Azzalini’s equation:

T
20 Y (72,780 Wiy eafl)
B = t=2 | (19)

T T-1
}; [; (yi,t-ﬂi)"r;; (Yi,f‘ai)zl

gives a good estimate of p, which can be used as the ¢, estimate. Unfortunately, this is not
appropriate for our situation for two reasons. First, it is only appropriate for an AR(1) process
which we find restrictive. Secondly, Azzalini’s equation assumes that each observed time series
is of the same length. This is not the case for the hurricane data since each storm has a different

number of position reports.
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Another published techniéue is developed by Pindyck and Rubinfeld; it is a procedure
called the "Time series Autocorrelatioﬁ Model.” They suggest "that one ought to cbnsider
pooling crés-s-secﬁon and times-series data under error assumptions involving time‘ series
autocorrelation (error terms from different time periods are correlare'd) as well as cross-section
heteroscadisticity (constant error variance).” (15:258)

An example of how this might be accomplished usiqg a latitude (LAT) model that uses

wind speed (WS) as an explanatory variable is:
LA = a+PWS; +e,, it = Pi8ie1*Vye (20)
where

E(ey?) = 02,
E(eitejt) =0 E(e,,t_iujt) =0 iwj (21)

v,.~N(0,0,2)
and the i={i* storm i=1,...,N} and t={t* time period, t=2,...,T}.

The assumptions imply that cross-section disturbances (storms) are uncorrelated and have
constant variance but time series disturbances are autocorrelated. We allow p to vary
from individual unit to individual unit but fix each error structure to involve first-order
serial correlation. We estimate each p, (for each storm) and then use the estimated p, as
a basis for the generalized least-squares regression. To estimate p,, i = 1,2,...,N, we
estimate the entire pooled sample using ordinary least squares. Since the parameter
estimates are consistent (as well as unbiased), we can usz them to calculate the regression
residuals ¢,. We then estimate 2ach p, consistently as follows:

N
Z;iu%u.l

b= 2 fori=12.N 22)
3 &

=2
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We proceed by forming the generalized difference form of the original model:

LAT,-p AT, , = a(1-p) |
+ p(WS,-p WS, - (23)
+ g, p,e,,_ '

_The generalized difference form can now be estimated by applying ordinary least squares
to the pooled model. NT - N observations are used in the estimation, since one
observation from each individual unit is dropped in the generalized differencing process.
Corrections for heteroscedasticity or cross-section correlation between individual units
would procwd in a fashion similar to that just described. If heteroscedasticity had been
present in the model, for example, we would use the residuals of the generalized
difference model (pooled) to estimate the individual error variances and then apply
weighted least squa-es in the third stage of the estimation process. (15:258-259)

The cross-section_ explanatory variablz could be thqught of as thé,individual storms, where we

could assume that the storms are independent of each other (uncorrelated) but that they have

constant variances (velocity-stationarj) but the time series disturbances (the movement over time)
are autocorrelated. This technique will not be used in this research due to time constramts
Instead we will adapt a variation of Curry’s approach

2.5 Review of Cuny s Methodology

The objective of Curry’s research focused on pr_oﬁding greater accuracy in predicting

hurricane landfall in order to insure timely evacuation, His research focused on using a bivariate
(latitude and longitude) fifth-order autoregressive it_iodel that could be used to predict. the

movement of a hurricane. He used a threshold approach to allow the model parameters to

change as the storm moves to a new region of the ocean. This section will review Curry’s data

mpnipulaﬁon, model identification, parameter estimation, foreasting techniques, and model

validation.
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2.5.1 Data Manipulation Curry used the "best track” storm data from the National
Environmental Satellite Data Information Sgwice that contained position reports of subtropical
storms, tropical storms andl_hurricanes from 1886 to 1983 (4:131). Curry initially deleted all
storms that occurred before 1945 due to concerns about the accuracy of the observations (4:134).

Next, he limited his data td only the storms that occurred in the Northern Atlantic Basin because

this is the United States coastal region of' concern. Then, all storms that did not attain more than

subtropical status (maximum wind less than 45 knots) were eliminated (4:40).

Curry then divided the hurricane data into seven latitude bands. Each band would cover
position repbns with latitudes within a five degree interval. The latitude bands are: 10-15N, 15-
20N, 20-25N, 25-30N, 30—35N , 35-40N and 40-45N in degrees latitude. |

After getting the data into _wbrkable sets, Curry’s next step involved détermining the
stationarity of the storms. Determining the "hurricane stationarity” of each storm was key to
Curry’s research. He states that in order to develop mbdels of the latitude _series and ﬁe
longitude series. it was necessary to deveiop a procedure to determine jf the series were weakly
stationary (4:30). He explains that, |

While it would seem that a hurricane which is continually in motion could never—
be considered to be stationary, this is not typically the case. If a storm is moving
due west (W) or east (E), the latitude series remains constant. In this case the
hurricane is latitude-stationary, i.e. the time series LA,,, LA,,, ..., LA,, varies
about a constant mean. A storm moving due north (N) or south (S), is longitude-
position stationary. :
If the storm is moving northwest (NW), northeast (NE), southwest (SW),
or southeast (SE), it is neither latitude-posiiion stationary nor longitude position
~stationary. When this occurs, stationarity can be induced by differencing
(calculating the change per unit time interval) the latitude and longitude series.
If the new series (which now represents velocities) vary about a constant mean,
the hurricane is said to be latitude-velocity and/or longitude-velocity stationary.
Jt describes a storm moving (say NW) at constant velocity and is used to predict
the next velocity, i.e. the next change in position. ... If the hurricane is
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accelerating (say in latitude), the latitude series must be differenced twice to
induce stationarity. The process of determining whether the latitude and longitude
series are stationary in position, velocity, or acceleration, results in nine possible

classifications for a particular track (see Table 2.1). (4:35-36)

Table 2.1. Curry’s Hurricane Stationarity Classifica‘ions.
M_

LONGITUDE
LATITUDE POSITION VELOCITY ACCELERATION
l POSITION 1. 2. : 3.
Standing Still | Moving East or | Accelerating
West ' West or East
VELOCITY 4. 5. 6.
Moving North Moving NE, SE, | Recurving N,S
or South SW, or NW or E, W ‘
ACCELERATING 7« 8. 9.
: Accelerating Recurving W,E | Accelerating
North or South | to N,S NE, SE, SW, or
' NW

Curry used an ad-hoc procedure in each latitude band to determine the vstationarity

classification of each storm In this procedure, he calculated the latitude lag-one least squares

regression coefficient and, if it was less than 0.8, the storm was considered latitude position-

\\ stationary If she coefficient was greater than or equal to 0.8, the lag-one latitude series was

differenced, and a similar coefficient calculated for the differenced series. Then, if this

coefficient was less than 0.8, the storm was considered latitude velocity-stationary. If still

greater than 0.8, it was differenced a second time and another similar coefficient was calculated.

Once again, if this was less than 0.8, the storm was considered latitude accelerationéstationary.

If not, the storm was discarded. The procedure was repeated for longitude in each latitude band.

The data matrices were then constructed for the stationarity class 5 storms. There was one data
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matrix for each latitude band with the rows made up of one differenced observation and its first
- four lagged differences.

Currv developed forecast models for only the stationarity class 5 storms. First, this é_lass

contained the greatest number of observations in al! the latitude bands. Second, it was found that

'no matter what stationary class the storm was in at the present, it was most frequently in
stationarity class 5 at later positions. This implied that any acceleration or lack of any movement
was short lived. "Consc juently, for six hour data a good guess of future stationary class of any
hurricane would be lat tude-velccity, longitude-velocity stationary (class 5)." (4:38)

2.5.2 Model Identification Curry’s next step was to identify the appropriate order for
the autoregressive process. He determined that it was necessary to use the latitude and longitude
velocities to make the time series stationary. By using the lag zero latitude and longitde
velocity columns as dependent variables and the lags one through five latitude and longitude
velocity columns as independent variables, he used a least squares regression procedure in SPSS
to estimatg the AR éoefﬁcients. This was used, instead of using a time series AR estimation

package, because of the segmenting of the hurricane tracks.

SEEE e Using the !zast squares regression procedure to esﬁmate the parameters, he found
significant (signiﬁcantl& different ﬁom zero) coefficients at lags 1, 4, and 5. He felt the
significant lag 4 coefficient might imply "that the process could be autoregressive with a *cyclic’
component at lag 4, representing a 24 hour lag. This componeni could physically reflect the

| diurnal effect of the sun (the slowing of the storm at night).” (4:39) He then regressed only

| using lags i, 4 and 5, and found that the lag 5 coefficient was "weak, so it was dropped from

the model.
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This léd to the general model with velocity coefficients evaluated at lags 1 and 4" (4:39),

as follows:

LA-LA | = &, (LA, | -LA, )+, (L4, ,-1A, )

+ ¢,,(LO,., 'Lo:-)f‘bu,z(wx-fw:-s) (24)

+ Cl '
LOSLO,y = &y (LA, -LA, )+, (LA, (-14, )

* 4’21(1‘0:-! -LO, ) +¢22.2(L0t-4—wt-5) 25)

+ C, ‘

where ¢ and C, are copStants and the ¢’s .are‘the model parameters. Lagged terms past the
‘siith period were not considered due to the short tracks of individual hurricanes.

253 Parameter Estimation After deciding what order the general autoregressive
_model would have, the next step was td &stimate its parameters. A separate forecast model was
estimated for both latitude and longitudé in each latitude band, making seven sets of latitude and
_ loﬁgitude models. Curry estimated the parametérs for each latitude band using least-squares
regression, treating the lag-zero latitude and longitude velocities as the dependent variables and
the Iag-oné and lag-four latitude and longitude velocities as the independent variables. He used

SPSS regression procedures to calculate the parameter estimates (4:113-114).

2.5.4 Forecasting To predict the movement of hurricanes, Curry made six-hour

forecasts of the last position report using the estimated latitude band models. The latitude of the
last position of the storm dictated which latitude band model to use for the forecast. Once a six-
bour forecast was made, it was used as the most current position report to make the next
forecast. This was repeated until a 72-hour forecast was obtained. He furnished both point and

~ interval forecasts for the hurricane’s position. |
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2.5.5 Forecast Errors Curry’s measured forecast error in terms of the great circle

distance (in nautical miles) between the actual {LA,LO) and the forecasted (LA,,LO,) position
of the cye of the hurricane. The éreat circle distance (GCD) is the standard measurement used

in hurricane forecasting and is calculated by:
GCD = 60 arccoslsin( LA, Jsin( LA )+cos( LA, Yeos( LA Yeos( LO-LO,)]  (26)

where all angles are in degrecs. The statistics used for his error comparisons were the sample

mean (MEAN) and the sample standard deviation (STD) of the forecast errors; computed via:

: GCD
MEAN = —-—‘Z; : @n
n
- ;; (GCD )*-n(MEAN)? - (28)

(n-1)
where n is the number of forecasted positions. MEAN gives an estimate of the expected forecast
error, and the STD gives a measure for the dispersion of all values around the mean.

2.5.6 Model Validation Curry’s final step was to validate his model. Curry had
reservations about estimating error by forecasting the same storms that were used in estimating
the model coefficients, so he deleted storms (one at a time) from the data base, recomputed the
model coefficients, and he used these modeis to forecast the "deleted” storms. He concluded
"that the 1arge number of observations in each region tended to diminish the contribution of
individual storms.” (4:139) He decided that using the model building data set to validate his

model was appropriate.
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2.6 Research Limitations

This research closely follows Curry’s methodologies except ip the following areas:

1. This research is focused on the modiﬁcatiqn of Curry’s model to improve its ability
to forecast all hurricanes, including stofms which do not meet his hurricane velocity-stationarity
classification. Thus, Curry’s prOcedufes for idenﬁfying velocity-stationary storms are not used. |

2. This research will only cohéentmte on déveloping boint forecasts of a hurricane’s
position. The interval forecasting procedures that Curry uses are not.

3. The same measuremients for analyzing forecast errof that Curry used will be used in
this research with the addition of mean squared prediction eﬁor (MSPR), calculated by:

[ . b .
Y 6cp; @9)

MSPR = &L
n

MSPR is the statistic of choice since it shows the effects of many large errors better than the

mean or standard deviation.

28




HI. Methodology

This chapter provides a discussion of the methodology used to examine eaéh of the
folloWing areas in modifying Curry’s model:
s Data Manipulation
» Model Building
- Forecasting ‘
» Model Selection ’ }
" 3.1 Data Manipulation ' ' \
The data ﬁlés and the steps required to calculate the p;arameters for the timeA series
models are described in this section. The areas covered are:
| o Reduction of the Data

o Relaxation of Hurricane Stationarity

@ Separation into the Latitude Bands

3.1.1 Data Reduction The storm data were provided via computer disk by Curry. The
data set contained position reports at 6 hour intervals for storms, which includes hurricanes,
tropical storms and subtropical storms, .from the major basins wo_rldwide dating from 1945
through 1989. The disk format had 28 characters per record, where each record was a 6 hour

position report of a particular storm. The information in each record contained the storm

. identification number (ID), the date, the time, the latitude (LA), the longitude (LO) and the

maximum sustained wind speed (WS) of the storm at the position report (see Appendix I).
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The initial data reduction step limited the scope of investigétion to only the storms in the

'North' Atlantic. Then, any storm that did not reach tropical storm status, which means its

maximum sustained wind speeds did not exceed 45 knots, was "deleted because of their weak
persistence.” (4:134) -

Based on the procedures that Curry used, the next s@'hvolved eliminating "position
reports following landfall on the continental United States (US)J" (4:134) This was done since
the focus is to accurately predict hurricane landfall and. the a¢tuél movement of a storm after
landfall is inconsequential. This involved a slight clomplication, m that, the actial landfall of a

storm was not included in the data files used for this research. In addition, because the US

coastline is not a straight line or
easily deﬁne& area and since JIN,SOW
hurricane landfall on the Florida
peninsula can result in a second,
crucial landfall on the Gulif Coast,

an assumption was made in

determining when a storm made

jandfall.  This assumption | 10N,100W 10N.20W

involved drawing a "boundary of Figure 3.1, Landfall Cutoff Boundaries

landfall" just inside the US

coastline (sze Figure 3.1.).. Any position reports that were past this boundary (inside the
continertal US) vere considered after laﬁdfall and eliminated. The FORTRAN code used to set

the bourcary is included in Apperdix H.
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The final step involved establishing a set of test storms to be used in validating the

models. The choice of this test set was based on the fact that Curry only used data through 1983

in fitting his models; accordingly we fit our models to the samé data and included all storms that

occurred after 1983 in the test data. There were 45 storms with over 1076 position reports in

this test set dating from 1984 ﬂxrough 1989. After removing the test set, 351 storm tracks

‘ containing a total of 9508 position reports were left for estimating the parameters of the models.

3.1.2 Relaxation of Hurricane Stationarity It is important, in time series analysis, -

"to know whether or not the underlying stochastic (random) process that generated the series can
be assumed to be invariant with respect to time." (15:497) If the series can be assumed to be
invariant with respect to time, which means "the probability of a given fluctuation in the process
from its mean level is assumed to be the same at any point in time ... it is possible tb ﬁxodel the

process via an equation with fixed coefficients that can be estimated from past data.” (15:497).

Thus parameter estimation for such a process takes much less effort than a nonstationary process.

To account for stationarity in the hurricane series, Curry breaks the nature of a hurricane into
nine stationarity classifications, as discussed in the previous chapter (see Table 2.1).

Although these stationarity cléssiﬁcations are logical, there is some question as to their
relevance and also the practicality of determining the actual stationarity of a storm that is
currently headed for the coast. First, when only using the storms that are classified as velocity-
stationary in estimating model parameters, a lot of information is lost. The information
contained in the storms not used because they were not velocity-stationary is wasted; thus for a
current storm to be forecasted accurately, the storm must be velocity-stationary. This limits the

application and the accuracy of the model.
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This research will relax Curry’s stationarity classes and use aJl'the hurricane tracks to
estimate model parameters in the latitude bands. It still, however, must be decided whether or
not the time series of hurricane tracks are stationary or nonstationary. If the series are presumed

to be nonstationary, the estimation procedures are complicated since the coefficients would have

to be "time-varying" because the series is not "invariant with respect to time." Differencing

~ would then appear to be required. On the other hand, if the series were presumed to be
stationary, the overall structure of the model would be changed since differencing would no
longer be required. Accordingly, the differenced mode_.l‘ that Curry developed may not be the

best available for forecasting. This sdggmts the following models with no differenced vterms:

LA, = & LA, +d, LA, ¢ty A,

+ 019, L0,  +0,5,L0, ¥y, LO, (32)
+ O3 WS, #0155, 5 e 0y WS,

+C

LO, =.¢21,1LA:—'1 +y LA, 5+ *4’21,“:'-;: :
+ 02,L0, 1 *0,L0, 5+ 401 LO, : (33)
+ Oy WS, 4035, W5, 54ty WS,

+ Cz

WS, = &3y LA, 43,14, 54ty LA,

* $59)L0, 1 +455L0, 5+ 4y LO, (4
K PRLAWRL PPY A PRI R A

+ C3

but these models were ruled out after estimating their parameters by least squares using SAS.

The models for all the latitude bands showed little explained error, with high Mean Squared
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- Error (MSE) and very low R’ statistics. This suggested that the series are indeed ndnstau’onary,

- and probably should be differenced.

Accordingly, differenced models were chosen over the non-differenced models to improve
explanatory capability. The differenced latitudes (LA,-LA,,) or longitudes (LO,-LO,,) will be
referred to as latitude or longitude velocities henceforth.

o 3.1.3 Separation into Latitude Bands Based on Curry’s analysis, it was believed that
the model parametérs should be allowed to cha;lge as the storm moved. This involved a

threshold model as described in Section 2.3. Thus, the hurricane tracks were segmented by

latitude bands five degrees in width, 10-15N, 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

40-45N in degrees latitude. When a hurricane crossed into another latitude band, the parameters

for the new latitude band were used for the next forecast. Models were made for latitude and

longitude in each of these bands separately which allowed the parameters to change as the storm |

moved. When the forecast latitude 2nters a new latitude band, the models associated with that
new latitude band is used.

As discussed in Chapter 2, the data, to which the models for each latitude band were fit,

} inclrlrxdedﬁall pqgition reports within that band plus the five position reports obtained before a

storm moves into that band. Accordingly, the data base used in this research was arranged in
rows wherein each'row contained the present position report of a storm (its latitude, longitude
and wind speed), and the five most recent values of the latitude velocities, longitude velocities
and wind speeds. This allowed for many more observations in each latitude band than Curry’s

procedure allowed.
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3.2 Model Building

The parameters for each model were estimated using the SAS regression procedure

(PROC REG) applied to the set of 351 storms occurring in the period from 1945-1983. This

- section descﬁbes the methods used to identify, specify and estimate the parameters of the

multiple models for this research. The identification and §peciﬁcaﬁon of the Qaﬁaﬁons of
forecasting models will be discussed for position models and wind speed xﬁodels.

3.2.1 Position Models The position models forecast the latitude and longitude
coordinates of the eye ofa hurri:cane. Each model has a set of latitude and iongitude equations |

for each of the seven latitude bands (see section 3.1.3). The latitude band models have the
general form of an fifth-order atinoregressive (AR(S)) model applied to the latitude and longitude
| .

velocities, as follows: ‘
LA-LA, | = & (LA, \-LA, ) +..+b,, (LA, -LA, )
t &12,(LO,1-LO, ) *... +&135(LO, 5-LO, o) (35)

t zm WSyt t s s WS,
1

LO-LO, , = &y, (LA, -LA, ).ty (L4, s-1A, ) ,
+ ¢22.1(Loz-l -LO, )+... +¢w(L0,_5—LO,_6) 36)
+ &, W5, ton ¥y WS,
+ C2

 where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents

. the maximum sustained wind speed at time t and C,, C, and C, are constants. The significant

independent variables change according to the selection process used in each model. All the

models use six previous position reports (differenced once to obtain five velocities), unless the
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coefficient for a particular lag is zero.» Eleven position models were evaluated in this research.
Their properties and estimation processes are described accerding to the following four sections:
1. Curry Models (2 Models) | |
- 2. Univariate Models (3 Models)

3. Bivariate Models (3 Models)

4. Trivariate Models (3 Models)

Curry Models. These two forecast models have the general form shown in Equations (14)
and (15), which is the model that Curry specified iﬁ his dissertation in which latituds and
longitude are functions of each other at lags one and four. The first model is referred to as the
CURRY model;' its parameters were estimated in his researcu using only' his stationary class §
storms (see Table B.1). '

The second model has the same dependent variables (lags 1 and 4) as Curry’s model, but
the coefficients were reestimated using alf the storms (1945-1983), not just the velocityoStaﬁonary
storms. ThiS'model is referred to as the CURRY NEW model. The latitude and longitude
velocity coefﬁcienis for this model are summarized in Table B.2. |

_ Univariate Models. ’i}nivaﬁate autqregres;ive models were formu}ated to see if the
dependence between latitude and longitude is significant. The model for each latitude band will
include latitude velocity at’tiﬁxe t (LA-LA,,) predicted by past latitude velocities only, and

~longitude velocity at time t (LO-LO,,) predicted by past longitude velocities onlyv. The

coefficients for all other dependent variables are zero.
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The univariate models thus have the form: -

LA-IA,, = 4’1.1‘“:—1"“:—2)*4’1,2(“:-2'“:-3) o a7
*oe +¢I,S(LA3-5 -LA, Jte,

LO,-LO, , = $,,(L0, ,~LO, ) *¢z,z(w;_z’w:-a) . (38)
. ' +out, ((LO, s~LO, )ty '

The estimation technique that is recommended by Curry to use ordinary least-square regression
was utilized, with past values of latitude (longitude) w;elocity as predictors for the current latitude
(longitude) velocity. Piudyck and Rubinfeld support this by stating, "if the number of terms in
 the distributed lag is very-smﬁl, the equation’ can be estimated using ordinary least-squares
regression.” (15:232) They go on to say that using lagged yariables as indepéndent variables in
ordinary least-squares is uncomplicated, but it fniéht lead to imprecise parameter estimates -
because of the presence of multicollinearity and also because a lengthy lag structure coﬁld use
up a large number of dégrees of freedom (15:232).

Multicollinearity arises when the lagged variables aré highly autocorrelated. In time
series studies, this is almost certain to occur to some degrez since observations from time periods
close together are presumed to be correlatéd. Accofding to Makridakis, both the loss of degrees
of freedom and the problem of multicollinearity can be resolved by eliminating all but one of the
highly correlated variables from the model (8:616). To account fdr the possible loss of degrees
of freedom, Curry hmlted the number of lags of latitude and longitude velocity he used in his
model. Since, Curry felt that the effects of a storm’s motion more than 36 hours prior was
negligible, he used no more than five velocity lags. Since we agree with this assessment, the

lag-5 velocity will be the largest used in the models for this rescarch. Note, for example, that
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the lag-5 latitude velocity is LA, s-LA,s, where LA, is the latitﬁde observed six time periods in
the past, or 36 houré, prior to time t.

In this research, to further guard against the effects of multicollinearity, the STEPWISE
and BACKWARD options in SAS regression procedure were used during parameter estimation.
These options w'gfe.use'd hypothesizing that they would aid in determining the actual order of the
model by el‘iminatir‘lg any lagged variabies which would not change the explanatory poWer of the
model by a siéniﬁéant amount. The STEFWISE and BACKWARD parameter selection options
in SAS determine the variables that contribute the most by their influence on the R? (see Equation
5); only the vadaﬁl&s that significantly affect R? are left in the model. The BACKWARD option
selects the optimal variables for the model by fitting the entire model and then "one by one
deleting variables until all the variables remaining in the model produce F statistics significant
at the 0.10 level. At each step, the variable showing the least contribution to the model is
deleted.” (18:818) The STEPWISE option selects the optimai set of variables by bringing in the
variables one at a time, ahd at each step checks the F statistic for significance at the 0.15 level

with the variables included, then removes any variables that are not significant (18:818).

- . Three univariate models were formulated: (1) UNI FULL - a full univariate model which - - - - -

has all the parameters for the five lag velocities included in the model (see Table B.3), (2) UNI
STEP - a stepwise univariate model with only the parameters of the significant velocities chosen
by the SAS STEPWISE option (see Table B.4), and (3) UNI BACK - a backward univariate

model with only the parameters chosen by the SAS BACKWARD option (see Table B.S5).
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Bivariate Models. Curry’s basic models expressed the latitude velocity at time t
(LA-LA,,) as a function of past latitude and longitude velocities; and the longitude velocity at

time t (LO-LO,,) as a function of past longitude and latitude velocities as well:

IA, = 14, *4’11.1(“:-1"M:—z)"‘-"*‘bnl,s(“x-s"“:-s)

+ ‘bu,x(w:-l -Lot-2)+"‘+¢12,5(wt-5-wt-6) (39)
+C '

LO, = LO, ,+¢,, (LA, \~LA, )+..+dy (LA, ~LA, O
* 0,00,,LO, )4 by (L0510, ) (“0)
+C, :

where the C, and C, constants and the ¢s are estimated using least Squares regression. Three
new bivariate models were formulated: (1) BI FULL - a full bivariate model (see Tables B.6 and
B.7), (2) BI STEP - a‘ stepwise bivariate model (see Tables B.8 and B.9) and (3) BI BACK -
a backward bivariafe model (see Tables B.10 and B.11). | -

Trivariate Models. These models incorporate maximum wind ‘spwd of past hurricane

position reports as another expianatory variable The models for this variation are:

LA-IA,, = d’u,x(ux-l'“:—z)+"'+¢11,s(uc-s“ux-6) _
*+ &15,(LO, ,~LO, ) *...+$y, (LO, 5-LO, ) 41)
+ Qs WS+t 3 s WS,
+ C1

LO,-LO, | = &, (LA, | -LA, )+... *4’21;(“:-5 -LA,
*+ &,(LO,  ~LO, )+...+¢y (LO, 4-
+ ¢”,l Ws‘_l +eee +¢23's Ws‘_s

+
C, _‘

2 “2)
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the maximum sustained wi.nd'spe.ed at time tand C, and C, are éonstants. A forecast model for
the maximum sustained wind speed is described in the next section. A-wind speed forecast is
needed since the position foreéas'.s are dependent on the wind speed in these models, thus the
position forecasts will need a wind speed forecast in calculating future values. The parameters
were estimated using least-squares regreséion, as in the univariate and bivariate cases, with the
addition of the wind speed as an extra dépendent voriable. Three multivariate models were
formulated: »(1) TRI FULL - a full order trivariate model (see Tables B.12 cnd B.13), (2) TRI
STEP a stepwise trivariate model (see Tables B.14 and B.15) anG (3) TRI BACK - a backward
trivariate model (see Tables B.16 and B.17). The eleven position models are summarized in
~ Table 3.1. |

3.2.2 Wind Speed Models The two incentives for formulating a model to forecast
maximum sustained wind speed.(WS) are: (1) a WS forecast is necessary in the trivariate position
forecast models which use WS as an vexplanatory variable of latitude and longitude, and (2) a
WS forecast will be ﬁeneﬁcial to the hurricane fbregaster as a prediction for storm intensity;

The WS was forecasted as a function of past wind M, latitude velocities and longitude

velocities. The peneral form of the WS model is: L L

WS, = by (LA, ~LA, )4+ (LA, s-LA, )
+ §5p,(LO,-LO, 5) +...+&5, ((LO, 4-LO, o) 43)
+ Gy WS,y ten by SHS,
+ C3
where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents

the maximum sustained wind speed at time t and C, is a constant.
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The parameters were estimated using least-squares regression, as in the trivariate position

forecast' models, wi;h the WS at time t (WS) as the depend_ent variable. Three multivariate
models were formulated: (1) WS FULL - a full order trivariate model (see Téble B.1 8)', (2) WS
STEP a stepWise trivariate model and (3) WS BACK - a backward trivariate model. The WS
STEP aﬁd‘ WS BACK models for all the latitude bands were equivalent, so the ivind speed
forecast model WS BACK (see Table B:19) will refer to the model ‘selecvtet‘i by either option.

. The wind speed and position models are summarized in Table 3.1.




Table 3.1. Summary of Forecast Models.

Position Model Dependent Variable Parameter Estimation Table # in
Summary Procedure Appendix
W
1. CURRY Lags 1 & 4 (Bivariate) | None. (Already Estimated) B.1
2. CURRY NEW | Lags 1 & 4 (Bivariate) | SAS PROC REG (no option) B.2
3. UNIFULL | Alllags1-5 SAS PROC REG (no option) |  B.3
(Univariate)
4. UNI STEP Selected lags from 1 - 5 | SAS PROC REG B.4
(Univariate) - | (STEPWISE option)
5. UNI BACK Selected lags from 1 - 5 | SAS PROC REG B.5
' (Univariate) (BACKWARD option) .
6. BI FULL All lags 1-5 SAS PROC REG (no option) B.6, 7
(Bivariate) -
7. BI STEP ‘Selected lags from 1 - 5 | SAS PROC REG B8,9
(Bivariate) | (STEPWISE option)
8. BI BACK Selected lags from 1 - 5 | SAS PROC REG B.10, 11
(Bivariate) (BACKWARD option)
9. TRI FULL All lags 1 -5 SAS PROC REG (no option) { B.12, 13
: (Trivariate)
10. TRI STEP Selected lags from 1 - 5 | SAS PROC REG B.14, 15
(Trivariate) (STEPWISE option)
11. TRI BACK Selected lags from 1 - 5 | SAS PROC REG B.16, 17
(Trivariate) (BACKWARD option)
m{
Wind Speed Dependent Variable Parameter Estimation Table # in
Model Summary Procedure Appendix
N N AN ket SO W 3 hcaes B |
1. WS FULL All lags 1 -5 SAS PROC REG (no option) B.18
(Trivariate) ‘
2. WS BACK Selected lags from 1 - 5§ | SAS PROC REG B.19
WS STEP (Trivariate) (BACKWARD and
STEPWISE options)
41
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3.3 Forecasting

Once all the position and wind speed mc;dels ﬁad been estimateci, the next step was to
cempare their abilities in forecasting hurricanes; Two sets of storm data were used for the
comparisons, (1) the entire set of 351 sforms used in model-building and (2) the test set of 45
storms. The FORTRAN code used is shown in Aﬁpendix H. The four main steps required in
forecasting the hurricane tracké in the two data sets are as follows: | 4

o Data Manipulation |

@ Retrieving Model Coefficients

o Calculating Forecasts

o Calculating Fofecast Errors

3.3.1 Data Manipulation The two sets of data are the same as in Section 3.2.1. The

data were put into matrices similar to those used for the model bui_lding data, where all the lags -

were stored on the same row as the current position report, except no differencing was used.
The forecasts were stored on the same row as the légs and present values.

3.3.2 Retrieving the Model Coefficients Due to the muitiple models which are used

‘to forecast the three data sets of hurricane tracks, the mode! coefficients for each separate model

were read into the forecast routine as matrices. This allowed forecésts based on the different

models to be made easily. This is included in the FORTRAN code shown in Appendix H.
Each model had a separate set of latitude velocity, longitude velocity and wind speed
coefficients for each latitude band, so the forecasting equations could change as the storm moved.

Curry’s latitude bands were again used (10-15N, 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

" 40-45N in degrees latitude).
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A wind speed forecast was included with all the position forecasts, which does not affect

the position forecasts except in the trivariate models. The wind speed fdrec#st was neéessary in
developing position forecasts using the trivariate models which used the wind speeds as a
dependent variable. |
- 3.3.3 Calculating vForecasts The forecasts were made using the basxc models shown
in Equations 41, 42, and 43 for latitude, longitude énd maximum sustained wind speed,
| respectivély. The coefficients depend on the modél being used to obtain the forecasts. If a
particular coefficient is not significant or not used in the model (example: if STEPWISE did not
select it for inclusion in the model), then the coefficient is set to zero. The méthod for
forecasting hurricane position is the identical to Curry’s method, and is stated as foilows:
A’I‘he one step ahead fdrecast position (LA,, LO)) is based on the use of the (six) previous
(six hour) position reports. To obtain the two step ahead forecast, (LA,, LO) is treated
as the last observed position, and the one step ahead forecast (from time ) is computed.
Forecasts for lead times up to n steps ahead are computed in a similar manner. (4:65)
This method is assumed to be appropriate for this application and is duplicated in obtaining the
maximum sustained wind speed forecasts. One drawback to this method is that any errofs which
occur in the first step (6 hour) forecast are likely to carry through all ;ﬁe forecasts, and any
errors which occur in the second step forecast are likely to carry through subsequent forecasts.
However, since the model parameters are allowed to change when a hurricane crosses into a new
latitude band, this error would be hard to eradicate. Also, irregardless of whether the last
observed position is a actual or forecasted position, the appropriate forecast equations are

determined by the latitude band that the last observed position is in.
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3.3.4 Calculating Forecast Errors Once the forecasts had been calculated and stored,

the forecast errors could be calculated. Forecast errors were computed for the 6-, 12-, 24-, 48-,
and 72-hour forecasts, as recommended by Curry. The primary measure is the great circle
distance (GCD), which is the dis@ce between the actual (LA,LO) and the forecasted (LA,,LO)
position of the eye of the hurricane in nahtic:ﬂ kliles (see Equation (26)). The statistics used for
the model comparisons were mean errors (MEAN), the standard deviations (STD) of the errors,
and the mean squared prediction error (MSPR), as given by Eqﬁations (27,) (28), and (29),
respectively. The forecast errors of the latitude coordinates, longitude coordinates and maximum
- sustained wind speeds were also calculated and evaluated using the same statistics.
3.4 Model Selection | |

| The model which showed the most overall accuracy when used to forecast the two
hurricane data sets was selected as the best forecasting model. lThe model coefficients of this

selected model were then recalculated incorporating all the storms from the test set (45 storms)

and the model-building set (351 storms), which will be referred to as the FINAL model. The

error analysis for the FINAL model was based on forecast errors of the combined data set (396

storms) and its predictive abilities compared to the other models. The forecasting results are -

summarized in the next chapter.




IV. Forecasting Results

This chapter prow}ides a discussion of the forecasting results in applying Curry’s model
and the ten new models to the historical hurricane tracks. The areas discussed are

® Model Analysis |

® Forecast Results

‘@ Final Model
4.1 Model Analysis

The eleven different models examined in this research are summarized in Table 3.1, a_nd
their fitted parameter estimates are presented in Appendix B. This section describes how the
parameters of these models give some information about hvurricane movement.. It is broken down
into two sections:

o Order of the Models and Persistence

o Dependence Between Variables _

4.1.1 Order of the Models and Persistence The lag-four cocfficients produced by the
STEPWISE and BACKWARD options are seldom significant enough to he included in a model.
This contradicts\Cuny’s decision to use the lag-four parameter to capture the "diurnal effect of
the sun (the slowing down of the storm at night)." (4:99) The lag-one parameter was included
the most often, and the lag-two parameter was the second most often included. This means that
the future storm movement is best captured by the most recent history of the storm, which Curry
refers to as persistence. This is also true for wind speed, which is primarily predicted by its

most recent past wind speeds alone.
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In addition, when observing the significant coefficients in the latitude velocity models,
the past latitude velocities appear to be the best predictors. This makes senSe since the latitude
velocity is expecied to be driven more by its past latitude velocity than by its loﬁgitude vel(;city.
The longitude velocity is best predicted with past longitude velocities and the wind speed is best
' predicted by past wind speeds. H&wever, the coefficients show that, in the middle latitude bands
~ (20-25 and 25-30), the latitude and the longitude velocities show a great deal of interdependence.
‘This can be seen by examining the coefficients that .are significant in the TRI BACK model (see
Tables B..l6land B.17). This presumably corresponds to where the storms start to change
direction from primarily toward the west and north to toward the east and north.

'4.1.2 Dependence Between Variables Examining the coefficients in the various
models, it seems that longitude is a better predictor for latitude as opposed to latitude as a
predictor for longitude, but only in the lower and middle latitude bands (10-15, 15-20, 20-25,
and 25-30). In the other latitude bands, neither latitude or longitude depends greatly on the
other. This contradicts Curry’s conclusion. He states that "latitude seems to be a better predictor
of longitudé as opposed to predicting via the reverse relationship.” (4:99)

In predicting wind speed, neither latitude or longitude show much significance in the
models (see Table B.19), but when latitude velocity coefficients are significant, they usually
correspond to the lag-one or lag-two terms. On the other hand, when longitude velocity

parameters are significant, the_y usually correspond to lag-four or lag-five terms.




4.2 Forecast Results
The procedures for férecasting (see Section 3.3) were used to develop the 6-, 12;, 24-,
48- and 72-hour forecasts on all eleven niodels. Wind speed forecasts were also examined, and
for simplicity, only the WS BACK model will be used to forecast wind speed for the remainder
of this research. The WS BACK model was chosen since (1) it was identical to the WS STEP
model, (2) it performed about the same as the WS FULL model, and (3) there are fewer
parameters in the WS BACK model than in the WS FULL model. Since WS BACK models
wind speed as a fuaction of previous wind speeds and previous latitude and lbngitude velocities,
it must be used in conjunction with a position model in order to obtain forecasts for times greater
than 6 hours ahead. |
The great circle distance was the primary measure of accuracy, although the errors in
- latitude and longitude were‘also examined. The great circle distances (GCD) were calculated
(sée Equatibn 26) for every 6-, 12-, 24-,‘48-, and 72-hour forecast for the storms in the model-
building data set (351 storms) and the test data set (45 storms). The. analysis on the GCD is
done separately in each data set. The statistics used to analyzé GCD were the mean (MEAN),
the standard deviation (STD), and the mean squared P?‘i‘,‘_i,"ﬁ,",“, error (MSPR) (see Equations 27,
28, and 29). This section is broken down into two areas:
@ Model-Building Data (Validation)

o Test Data
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4.2.1 Model Building Data (Validation) Forecasts were made for each of the 351

storms in the model-building data set for validation purposes. The objective was twofold: (1) |

o identify any incongruities in the models which could not be attributed to expected normal
errors and (2) to get a first look at the forecasﬁng abiliﬁes of the models. | | |

MEAN and STD. The MEAN and STD values for GCD (great circle distance), wind
speed error, latitude error, and longitude efror of the 6-, 12-, 24-, 48-, and 72-hour forecasts
are summarized in Tables C.1-C.5. In each casé, WS BACK is used to forecast wind speeds in
conjunction with the specified positién model.. The TRI BACK model had the consistently lower
MEAN and STD in all the forecast periods. The CURRY NEW model also performed quite
well, which may indicate that Curry’s“determined order may be satisfactory. |

MSPR. The MSPR values for GCD, wind speed error, latitude error, and longitude error
of the 6-, 12-, 24-, 48-, and 72-hour forecasts are summarized in Tables C.6-C.10. The TRI
BACK mode! had the lowest MSPR in ;ﬁe all tae forecast periods_,.whic’h would mean that
forecasting on thi’ set of hurricanes the TRI BACK model wouid be besc. The CURRY model
had the hxghest MSPR in all of the forecast periods, which would be as expected since its
coefficients were estimated using only ‘.certain storms. The latitude and longitude MSPRs
 concurred that the best model was the TRI BACK model. o

4.2.2 Test Data Forecasts were also made on the test data set (45 storms during the
period 1984-1989) in order to find the model that had the best 24-, 48-, and 72-hour forecasts.

MEAN and STD. The MEAN and STD values for GCD, wind speed error, latitude error,
and longitude error of the 6-, 12-, 24-, 48-, and 72-hour forecasts computed over the test set are

summarized in Tables D.1-D.6 using the WS BACK model. Once again, the TRI BACK model
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had.the consistently lower MEAN and STD in all the forecast periodé, especiaily in ihe‘48-hour
| forecasts. It is interesting to notice that in the 72-hour‘forecast the CURRY model has the
lowest MEAN GCD, wut it has the highest STD, which means it‘is the most variable forecast
model. In thé 72-hour forecasts, the TRI BACK model has thé next lowest MEAN and it has
the lowest STD .

MSPR. The MSPR values for GCD, wind speed error, Iatitude error, and longitude error
of the 6, 12, 24, 48, and 72-hour forecasts for the test set are summarized in Tables D.6—D4lO ‘
using the WS BACK model in conjunction with each msiﬁon model to forecast wind speed. The
TRI BACK model had the lowest MSPR for the 48 and 72-hour forecasts, the BI FULL model
had the lowest MSPR for the 12 and 24-h§ur forecasts, and the CURRY NEW model héd the
lowest MSPR for the 6-hcur forecasts. This would suggest‘ that Curry’s order and model
selection might be appropriate, but the longer forecasts could be improved by using the TRI
BACK model. The CURRY model still had the weakest performance of all the models for each
of the forecasts. |

- The latitude and longitude MSPRs concurred with the best model béing TRI BACK; fn
addition, these MSPRs show that the univariate medels, UNI FULJ ,and UNI BACK, predicted
the latitude coordinates well. This suggests that the longitude is not a good prédictor of latitude,
since in the univariate models no dependence tetween latitude and longitudé was accounted for.
This confirms Curry’s observations that longitude is a good predictor of latitude (4:99). The
summary statistics from the test data set forecasts confirm that the TRI BACK model would be

the best model (from this set of eleven models) to predict any hurricane.
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Figure 4.1. The Plot of Four Hurricanes Which Did Not Exhibit the Typical Hurricane Path

Histograms. The Mmgam for all the forecast periods for both the test set and model-
building set are shéwn in Appendix F. The GCD errors appear to be Normal (GCD is an
absolute error measurement, so a Normal distribution associated with it will be truncated), but
the existence of a few very large GCDs would suggest that some of the storms did not behave
like typical hurricanes. After examining the tracks of four of the storms that produced these
outliers, it is apparent that these tracks do not exhibit the typical hurricane path (see Figure 4.1).
Since the object of this research was to modify Curry’s model to best forecast all the stbrms,
these storms were left in both the model building and testing phases.

Latitude Band Summary. The forecast errors in the separate latitude bands show greater

errors in forecasting occur as the storms move north (see Appendix E).
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4.3 Final Model
The model comparison analysis suzgested that the TRI BACK model was the best model
since it displayed the best overall forecasting results of the eleven models. The next step was

to recalculate the TRI BACK model parameters using the two sets of data combined, which

| included 396 storms with over 10500 dbservaﬁons. The new model will be referred to as the

- FINAL model. This section focuses on model identification and forecasting.

4.3.1 Model Identificatior. The parameters for forecasting latitude, longitude and
maximum sustained wind speed as functions of éach other were estimated using SAS PROC REG
with the BACKWARD option. The estimated models for each latitude band are listed in
Appendix A, and the coefficients for latitude velocities, longitude velocities and maximum

sustained wind speed are summarized in Tables B.20, B.21 and B.22.

There seems to be a strong interdependence between the three variables, since in many

of the models there exists significant parameters for all three of the variables. In general,
latitude velocity depends mostly on past latitude velocities; but many longitude velocities and a

few past wind speeds are also included. Longitude velocities depend heaviiy on past longitude

_._.velocities. Wind speed is primarily a function of pasi wind speeds, as expected. The model R? -

values for al_l the models range from 0.647 to 0.972, with the larger values from wind speed
models. Since the higher R? values are from the models for predicting wind speed, we would
expect the wind speed to be predicted most accurately with these models. The lower R? values
for latitude and longitude velocities appeared in the 20-25N degree band, and, more generally,

the lower values were in the most southern bands (‘10-15N » 15-20N and 20-25N degrees).
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4.3.2 Forecasiing The forecasts for the FINAL model were made with the same

~ procedures in Sections 3.3 and 4.2, except that the test set was included in the model-building

set. The primary forecast evaluation tools for this model are the model-building data set (396
storms) and an examplé hurricane track. Hurricane Hugo (1989) was chosen, since its the

position reports were ‘eas.ily available and because it caused significant damage to a highly

~ populated area.

ModeI-BuiIdi;zg Set (396 storms). The entire set of data (396 stcrms) was forecasted
using the FINAL model, the CURRY model, and ths TRI BACK model. These three models
were used to cbmpafe the forecasting abilitieé between the CURRY model and the FINAL
‘medel, and to also to compare the TRI BACK model with the FINAL model to see if using the
entire data set to estimate the parameters effects the forecésting ability. |

Summary Statistics. ‘The primary measure GCD is used (see saction 4.2.1) to compare
these models using this set of hurricane tracks; the summary tables are in Appendix G. Both
the WS BACK and' the FINAL wind speed models were used separately to allow comparison
betweén models without haviﬁg to determine how much of the variance in the forecast errors is
due to the wind speed model errors, since our main focus is to compare position forecast ability.
The summary tables show that both wind speed models forecasted wind speed similarly with
virtually no affect on the position forecasts.

The overall summary statistics for the GCD MSPR (Tables G.1 and G.3) show that the
TRI BACK and FINAL models have equivalent posiﬁon forecasting ability, and both are better
than the CURRY model in all forecast periods. The GCD MEAN and STD results (Tables G.2

and G.4) also show that the TRI BACK and FINAL models have lower mean errors and lower
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standard déviations than the CURRY model. The 72-how forecast will be tested using tests of
hypotheses on the means and variances of two Normal :.stributions, to see if there is significant
differences Yetween the CURRY model and the FINAL 'model. The 72-hour forecast is used due
to its importance in hurricane forecasting. Normality will be assumed sincc; the number of
observations is high (minimum of 377 observations).

Test of the Means. A hypothesis test of the twb model means (17:289-290) GCD at the

72-hour forecast shows that there is a significant difference iti the means at the 0.0005 level:

H: Beyrry = Brmar

Hy Poyrry > Brouc

¢ = icuxm"im
V[ngm/ M cumrr*SrmvatMemar
. 285
593
= 4.303

feur = tooas. = 3291

where we reject H,, since t,” > tu.q. We can strongly conclude that the 72 hour GCD mean for

‘the FINAL model is less than the CURRY model (17:288).
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(17:295-296) of the two models also shows a significant difference: A - ,_/‘
H; OZymey = O o . - | -
Hl: "zURRY > O:INAL'
F, = Sézuxm . K
Seads,
(24027
= 1.394
Fepr = Fop o = 1.00
where we reject H,, since F, > Foea We can strongly concfude that the 72-hour forecast' error R "'
(GCD) vﬁriance for the FINAL model is less than the CURRY model‘(l7:2v95). Based on this \Z:‘! ,
analysis, we can conclude that the hurricane forecast ability for the FINAL model is better than . ' ,
Curry’s final model over the entire hurricane data s‘et.'. - | | ‘.'f\; 1 '
Hurricane Hugo. The FINAL, TRI BACK and cumi'i' models were used to forecast Vi )
- 7iiiu:el9789hurncanel-;ugo Hugo devastated the Nrortwhﬁ(ria;olina coastlme a;xd c;use; ;;m;ges that -vi/.,, :j"
exceeded millions of dollars; Table 4.1 shows the overallfofec/zxsﬁng statistics of the three .
models. The TRI BACK andvFINAL models showed similar forecasting ability, which is ,
expected since they are both similar models. The CURRY- model did not perform as well. ,
Figures 4.2 and 4.3 show the actual track of hurricane Hugo and the 72-hour forecést tracks that ' \
were made 72 hours before it actually hit the coastline using the CURRY model and the FINAL o ‘/
| |
54 » o
"_T». :';

Test of the Variances. The hypothesis test on the 72-hour forecast GCD variances
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Table 4.1. The Forecast Error Summary Statistics for Hurricane Hugo (1989).

S PR e A

FORECAST # MEAN (NM) STD WS MEAN WS STD
CURRY

6HR 42. 22.3969 38.2536 -0.5113 8.1422
12HR 42, 59.7075 86.5630 -1.2497 14.9071
24HR 41. 146.0242 204.0455 -2.3709 25.7854
48HR 41. 376.8226 400.4484 -4.0553 30.6029
72HR 40. 600.9904 519.5353 -1.9381 27.9269
FINAL :

6HR 42, 20.2171 31.06&2 -0.4479 8.1365
12HR 41. 47.4721 51.0166 -0.8859 14.9887
24HR 40. 105.8161 119.8206 -1.7695 25.6510
48HR 39, 256.6896 203.2172 -3.8079 29.8377
72HR 36. 390.9282 267.6997 -5.6445 25.2889
TRI BACK !

6HR 42. 20.8542 32.66i5 -0.5113 8.1422
12HR 41. 46.8584 51.0597 -0.9575 15.0223
24HR 40. 104.6282 121.4189 -1.9029 25.6006
48HR 39. 250.1266 199.5878 -3.9065 29.7214

36. 383.6379 273.4965 -5.2186 25.5723

72HR

l

&
model, respectively. The hurricane symbol marks the end of the 72-hour forecast track in each
figure, while the track for hurricane Hugo continues through the Northeastern part of the United
States. Neither model made a very accurate 72-hour forecast of Hugo; both expecting Hugo to
still be well out at sea, although the CURRY model did have a smaller error (see Table 4.2).

Figures 4.4 and 4.5 show the actual track of hurricane Hugo and the 48-hour forecast
tracks that were made 24 hours before it actually hit the coastline using the CURRY model and

the Final model, respectively. The 48-hour forecasts were used to illustrate how the FINAL
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Table 4.2. The Landfall GCD Forecast Errors for Hugo. ,
—w]

- -

72 HOURS FROM LANDFALL 24 HOURS FROM LANDFALL -

FORECAST FINAL CURRY - FINAL CURRY
PERIOD FORECAST FORECAST FORECAST FORECAST

6 HOUR 0.00 0.00 22.27 22.52

12 HOUR 55.67 19.14 70.35 101.30

24 HOUR 163.66 51.44 298.67 449.22

48 HOUR 422.16 230.05 LAND LAND

72 HOUR 697.08 495.45 LAND LAND

m
model had a forecast track right through the actual landfall position of Hugo (Charleston, SC)

even though the actual extrapolated prediction for landfall would be closer to 48 hours rather

than 24 hours. The Curry model also predicted landfall to occur in 48 hours but the location of

landfall was far south of Charleston.

Hugo was a very fast moving storm with acceleration towards Charleston. The ability

~ to account for any accelerations of its movement are exactly what Curry’s model cannot model

since it only used storms that were latitude and longitude stationary in velocity. The FINAL

model does seem to forecast these accelerations better, and give a more accurate forecast.
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Figure 4.2. CURRY 72-hour Forecast

Tracks of Hugo at 72 Hours from Landfall.
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Figure 4.3.

- FINAL 72-hour Forecast
Tracks of Hugo at 72 Hours From Landfall.
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The results of Chapter IV are summarized in this chapter, as they reiate to forecasting
hurricane movement. Some recommended topics for future research are also discussed.
5.1 Hurricane Modeling Conclusions

The objectives of this research were: (1) to modify Curry’s threshold autoregressive time
series model to impro;re its ability to forecast all types of hurricanes, (2) to forecast the |
maximum wind speed sustained for a hurricane, and (3) to include past maximum wind speeds |
as an explanatory variable to aid in forecasting hurricanes.

The first problem encountered in this research was eliminating position i'eports following
landfall (see section 3.1.1), since the forecast over land is not crucial. Creating a boundary for
landfall solved this problem and gave the flexibility to include hurricane tracks that moved
through the Florida peninsula towards the Gulf Coast communities.

The next concern involved the stationarity classifications that Curry used (see Section
3.1.2). It was concluded that the stationarity classifications would create complications when

7fo'r>ecasrting a storm in real-time. There is no way of telling what stationarity class the storm is
in until many position reports are coliected, and a storm may change classes several times \m its
duration. Accordingly, the stationarity classification was dropped from the model to estimate
new parameters using all the storms.

One of the major contributions of this research was the construction of the data files (see

Section 3.1.3), which allowed for many more observations to be included in estimating the

parameters. This allowed for stronger conclusions to be made about forecasting results and
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parameter estimation. One of Curry’s issues involved the limited number of useful observations

‘he had to work with. ‘It is felt that if Curry used this new strategy for constructing the data files,

he might meet all of his original objectives.
The eleven models used in this research involved slight modifications tc Curry’s model.

After estimating the parameters, each model was used to forecast the hurricanes in a test set so

the forecast abilities of the different models could be compared. The model that most accurately

| forecasted the 396 storms in the data base was a trivariate threshold autoregressive time series
model (see Appendlx A) referred to as the FINAL model. This forecast model prediéts latitude
velocity, longitude velocity and wind speed as functions of each other for fprecasts up to 72
| hours. It was estim!ated using SAS REG with the BACKWARD option. By .detennining the
order using BACK\\:IARD,' some of the information that Curry lost by leaving out all lag 2, lag
3,and lag 5 explamitory variables was gained, but with less risk of overSpecifying.

The FINAL model had average 24-, 48-, and 72-hour forecast errors of 103, 243, and

376 nautical miles, while Curry’s model had forecast errors of 120, 269, and 405 nantical miles.

| Accordingly, it is conjectured that the FINAL model would improve on Curry’s average errors.
| In addition, a model to forecast the maximum sustained wind speed had to be estimated
to use the wind speeds properly in the latitude and longitude forecast models. These maximum
sustained wind speed forecasts should be helpful to the hurricane forecaster. The wind speed
model used in this research gave mean errors and standard deviations of -0.1 and 15.4 miles per
hour (MPH) for the 24-hour forecast, 1.6 and 21.6 MPH for the 48-hcur forecast, 3.4 and 24.5
MPH for the 72-hour forecasts. In other words, the model forecasts maximum sustained wind

speed with a mean error of within 4 MPH.




'5.2 Future Hurricane Modeling

This model demonstrates that improveﬁxents can be gained in predicting the movement
of hurricanes. This section describes some future research which might improve our forecasting
ability even more. The areas that future research might focus on include: -

o- Using the Autocorrelation Modei

a Increase Number of Latitude Bands

- © Modeling the Hurricane Outliers Separately

5.2.1 The Autocorrelation Model | One of the problems encoﬁntered when formulating
the model for the hurricane data was the need to combine the cross-section (indeperident storms)
and time series data (individual position observations), see 'Section 2.4. Pool'ingr data waé
necessary since we wanted to examine the history of hurricane motion to find general patterns,
trends or persistence that hurricanes may share. Pindyck and Rubinfeld’s autocorrelation model,
described in Secﬁ;)n 2.4, may be a good means to accomplish pooling of the hurricane data
without losing any observations due to the independent storms.

v5..2.2 Increasing the Number of Latitude Bands The thfeshold model used in this
research duplicatc;,d Curry’s model (see Section 2.3), which was developed to allow the model
coefficients to changeA as the storm travelled through the Atlantic. One of the reasons thét Curry
segmented the Kﬂiﬁtic into only seven latitude bands was his lack of sufficient data in each of
the bands once the lagged data was made "storm unique” (1:106). In this research, a different
technique for breaking the data into latitude bands (see Section 3.1.3) allowed many more
observations to be used for developing models in each latitude band. Accordingly, it may be

beneficial to segment the Atlantic into more regions, since the data is available. This would
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allow the model to better reflect any effects the location of a ﬁurricaﬁe has on its motion. The
belief that the region of the ocean the storm is in has an impact on its motion is onc of the
hypothesis that drove Curry’s research effort (4:105). |
. 5.2.3 Modeling the Hurricane Outiiers Separately One,lof the factors creating some
of ﬁe _large forecast errors was the existence of certain storms which did not exhibit tyi)ig:al | |
hurricane tracks (see Figure 4.1). These tracks cguld not be accurately forecasted since they did
not exhibit any of the ﬁn&erlying patterns, trends and persistence that are common in the majority
of the past hurricane tracks. In addition, the inclusion of these storms in the parameter
| estimation phase might possibly weaken the ability of the model to accurately model the majority
of hurricane tracks which do possess common tracks. By esﬁmating the model parameters
without these storms, the model’s for@m of normal hurricane tracks could be more accurate,
at the expense of its ability to forecast the unusual tracks. |
One solutibn to this problem might be to model the normal hurricane tracks separétely
from the abnormal tracks. Unfortunately, the fdrecaster would have a hard time telling which
model to use in the early stages of the hurricane, if ever. The key would be to find some
underlying correlations or factors in these abnormal tracks which wduld allow the forecaster to
determine wheh their occurrence is most likely. Once this is determined, the forecaster could |
decide which model to give more consideration.
| | In this research, the four storms from the test data, which gave 72-hour forecast errors
above 1000 nautical miles when forecasted using the TRI BACK model, were inspected (see
Figure 4.1). This examination revealed thaf all these abnormal storms materialized after

September 15th (late season storms). This miy suggest that the late season storms should be
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- modeled separately from all other storms, which. may give a bétter forecast fbr the early season
storms, thus reducing the overall forecast errors. |
5.3 Overall Evaluation |
The FINAL model, see Appendix A, shows more promise than Curry’s m&del_ for
forééaéting hurricanes because it shows a significant improvement in mean and variance in
forecast errors. An added feature of the FINAL model is that it would predict the maximum .
sustamed wind speed of the 72-hour forecast with mean error of less than 4 miles per hour. This
makes the FINAL model even more valuable to the hurricane forecaster, since one of the
emerging issues in the 19th Conference on Hurricanes and Tropical Meteorology (May 1991),
was ﬁe ability to prcdict the intensity of a storm. | |
Before presenting this model to the NHC, the reconimendations should be implemented.
- These enhancements should significantly improve the models ability to forecast hurricane
movement. In the mean time, this model could be programmed for a personal computer to use

as a supplementary tool for the hurricane forecaster.
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These are the recdmmended latitude band models for foreéasting the positions and..
maximum wind speeds of tropical storms and hurricanes. The models were estimated using the
past velocities of latitude and longitude, and the past wind speeds of 396 storms from 1945-1989.
Hurricane official reports are made at 6 hour intervals, at 000Z, 0_6002, 1200Z and 1800Z.

In the models, the subscripts refer to the time period ot_' the variable, where’a hurricanes

| Appendix A. The FINAL Model

‘ present report is referred to as t-1, and the previous report is referred as t-2, two reports previous
|
\

is t-3, and so on. These models can be used to find the one-step ahead (t) position and wind
speed forecasts, then the two-step ahead (t+1) forecast can made using the (t) forecast as the
(t-1) report, the present report (t-1) as the (t-2) report, and so on.

Latitude Band: 10-15 degrees N

LA,=LA,_,+0.766(LA,_,-LA, ,)+0.107(LA, ,~LA, ))
+0.088(LAt-4-LA, )-0.143(LA, LA, )
~0.105(LO, , ~LO, ;})*0.054(LO, ,~LO, ,)+0.038(LO, s-LO, o)
+0.002(WS, ,)-0.002(WS, 9
+0.065

)

LO~LO, ,+0.136(LA,_,-LA, ))-0.179{LA, ,-LA, J+0.109(LA, s-LA, )
+8ULD,,-LO, ) 10116(L0,57L0,.)
-0.001(Ws,_,)
+0.085

WS,=1.457(LA, , -u,_,)
+0.622(L0, ,-LO,,)
+1.516(WS, ,)-0.530(5,.)
+0.586 |




Latitude Band: 15-20 degrees N

LA,=LA, ,+0954(LA, LA, ) 0063(1-4, 2714, )

-0.034(L0, ,-LO,_;) +0.038(LO L0, )
+0.001(Ws,_,) 0001(WS )
+0.044

1010, ,+855(L0, ,-10, ) 00750, 4-LO, §
-+ -0.005(Ws, . *OOOS(WS,_,)
+0.049

WS,=1.449(WS, _,)-0.425(WS,_,)-0.056(WS )
+2,116

Latitude Band: 20-25 degrees N

LA LA, +0.880(LA, , -LA, ) +0.075(LA, LA, ) 0088(IA, LA,
-0.206(L0, ,-LO, ,) *0078(LO, , -L0, )
+0.065(LO, ;-LO, )+0.038(L0, ,~LO, )
+0.091

LO~LO, ,-0.383(L4, | -LA, )+0.251(L4, ,-14, )

+0.634(LO, LO,)+00931.0 LOH) : e

+o.119(Lo,_3 LO, )+0.065(LO, ,-LO, )
+0.,058

WS,=1.529(LA, ,-1A4, )
+1 A32AWS,) 0464(WS 2)
+1.817
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Latitude Band: 25-30 degrees N

LA=LA, | +1.036(LA, -LA, ))-0.157(LA, ,-LA, )
- +0.068(LA, -LA,_ )-0.07%LA, ;-LA, )
-0.114(LO, ,-LO, ,) +0.098(LO, ,-LO, )
+0.002( WS, _))-0.002(Ws,_,) .
+0.066

LO,-LO, ,-0.382(LA, , -LA, ,)+0.251(LA, ,~IA, )
+0.634(LO, ,-LO, ,)+0.093(LO, ,-LO, )
-0.118(L0, ,-LO, )*0.065(LO, ,-LO,_)
+0.058

WS,=0.389(LO, ,-LO, )
+1.408(WS,_,)-0.399(WS, ) -0.100(WS, ) +0.045(WS, )
+2.116 ‘

Latitude Band: 30-35 degrees N

LA=LA,_,+1.081(LA, ,-LA, ,)-0253(LA, ,~LA, )
+0.138(LA, ,~LA, )-0.073(LA, ,-LA, )
~0.053(LO, ,-LO, ,)+0.051(LO, ,-LO, )
+0.0C1(WS, )
+0.019

LO,~LO, ,-0.04%(LA, ,-LA, ,)-0.056(LA, ,-LA, )
+1.102(L0, , -0, ,)-0.073(LO, ,-1O, )
~0.081(LO, ,-LO, )-0.043(LO, -LO, )

~0.039 .
WS,=0.422(LO, 4-LO, o) o \
+1.334(WS, ,)-0.224(WS, )-0.156(WS, ,) 1
+2.825 ' , . 1




[

Latitude Band: 35-40 degrees N

LA =LA, +1.132(L4, ,-LA, ))-0.193(L4, ,-LA, ))
~0.057(LO,_,-LO, ;) +0.12%(LO, ,~LO,_))
~0.066L0, ;~1.0, )
+0.079

LOLO, ,~0.129(LA, A, ) |
- +1216(LO, L0, ,)~0.246(LO, ,-LG, )
~0.078(LO, ,-LO, )
+0.005(#3, ) -0.005(WS, )
0103

WS,=1.359(IVS,_,)-0.264({W’S, ,)-0.142(WS, ,)
+2.380

Latitude Band: 40-45 degrees N

LA=14, ,+0.996(L4, , -LA, )-0.137(LA, ;-LA, )
-0.070(LO,_,-LO, ) +0.064(LO, ,-LO, )
+0.007(Ws,_,) -0.005(Ws,_)
+0.029

LOLO, ,~0.182(LA, ,-LA, ,)-0.208(Ld _,-LA, )
+1.062(LO,_, ~LO, ))-0.152(LO, ,-LO, ;)
+0.166(LO,_,~LO, )-0.218(LO, ,-LO, )
+-0.006(WS,_, +0.015(WS, ) -0.013(WS, )
-0.153

#3,=1.163(WS,_,) -0.103(Ws,_,)-0.167(WS, )
+4.300
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Appendix B. The Forecasting Models Coefficients

This Appendix summarizes‘the coefficients for the varioﬁs models used in this study. The
headings and variables used are as follows {thew subscripts refer to the t* cbservation of a time
series; for example, a hurricanes present report is referred to as #-1, and the previous report is
referred as -2, two reports previous is ¢-3, and so on}:

Position Variables

LATD - The Iaﬁtude velocity forecast LA, - LA, |

LOND - The longitude Slelocity forecast LO, - LO,,

LATD LAG 1 (to 5) - The lag 1 (to 5) latitude velocity LA,, - LA, (LA,; - LA

LOND LAG 1 (to 5) - The lag 1 (to 5) latitude velocity LO,, - LO,; (LO,s - LO,)

Wind Speed Variavles
WS - The maximum sustained wind spwd forecast W&
WS LAG 1 (to 5) - The lag 1 (to 5) maximum sustamed wind speed WS (WS,,)

PN - . . oy N . ‘ NN
. ! . . . L. RN A R SN R
- . - - Lo e ETCE i e E o T \
. [N N [

<y
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Table B.1. Curry’s Bivariate Model.

LATITUDE BANDS

pEp || zNDEP | 10-15 [ 15-20 | 20-25 | 25-30 | 30-35 [ 35-40 | 40-45

VAR | VAR

LATD { INTER- | .048 | .053 |.054 | .071 |.072 | .087 |-.086
CEPT .
LATD .696 | .766 | .s849 | .777 | .746 | .735 | .7423
LAG 1 .
LATD .101 | -.106 | .013 | .016 |-.015 |~-.094 | .013
LAG 4 .
LOND -.010 [ ~-.064 | -.101 | ~.049 | -.075 | -.067
LAG 1
LOND .014 |.073 | .083 |-.011|.023 |-.003
LAG 4 ’

LOND | INTER- | .127 | .139 | .067 | .052 |-.044 | ~-.109 | -.205
CEPT
LATD .233 |.012 |.026 | .103 |.050 | .0300 |-.145
LAG 1
LATD -.075 | -.050 | -.052 | -.198 | -.030 | -.005 | .125
LAG 4 :
LOND .607 |-.775 |.779 | .837 -|.s41 | .881 | .831
LAG 1 ,
LOND .251 | .088 |.121 |.032 |.o0o68 | .006 |-~.042
LAG 4 :
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LATITUDE BANDS

Table B.2. Bivariate Coefficients Using Curry’s Determined Crder.

INDEP | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
VAR
INTER- | .075 | .039 |.095 |.076 |.062 |.075 | .147
CEPT :
LATD .844 | .018 |.874 |.923 |.949 |1.017 |{1.033
LAG 1 '
LATD -.003 | ~.020 | .003 |-.045 | -.025 | -.088 | -.130
LAG 4
LOND -.063 | -.035 | -.144 | -.091 | -.019 | ~.046 | -.002
LAG 1 :
LOND .045 | .042 |.093 |.082 |.022 |.043 |.o08
i Lac 4 »
TR-SQR .681 | .7340 | .663 | .7959 | .814 | .800 | .760
MSE .026 | .033 |.o80 |.o064 |.091 |.121 |{.250

1529

1256

1014

580

' # OBS 578 996 1344
INTER- | .049 .062

.104 -0012 -.044 -0106 = e 314
CEPT
LATD .119 -.042 | -.247 | .030 -.062 | -.070 | .0633
LAG 1 )
LATD -.089 | .032 .072 -.100 | ~.046 | -.074 | ~-.122
LAG 4
LOND .874 .872 .689 1.014 |1.004 |1.048 |1.028

| LAG 1 ' : e N
'LOND .070 .056 173 -.087 | -.102 -.1387 -.191
LAG 4
R-SQR .834 .809 .597 .835 .861 .847 .782
MSE .046 .075 .230 .114 .135 . 209 .518
# OBS 578 996 1344 1529 1256 1014 580
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Table B.3. LATD & LOND Univariate Coefficients (All Included).

LATITUDE BANDS

LAG 5

pEP | INDEP |10-15 |15-20 |20-25 | 25-30 | 30-35 | 35-40 | 40-45
VAR VAR
LATD § INTER~ | .053 .046 .074 .085 .065 . | .076 171
CEPT
LATD .778 .976 .704 1.072 |1.079 |1.163 |1.052
LAG 1
LATD .105 -.097 | .129 -.201 | -.238 | -.191 | -.005
LAG 2
LAG 3
LATD .113 -.023 | .037 .101 .030 -.055 | .089
LAG 4 |
LATD -.171 | .035 -.067 | ~-.088 | -.068 | .022 -.171
LAG 5
STAT || R~-SQR .685 .733 .647 . 795 .819 .801 .764
MSE .026 .033 .084 .064 .088 .120 .246
# OBS 578 996 1344 1529 1256 1014 580
LOND INTER- | .056 .051 .003 -,034 | -.092 | -.177 | -.392
CEPT :
LOND .867 .887 .488 1.068 | 1.113 {1.269 |1.057
LAG 1
LOND -.036 | ~.081 | .201 -.013 | ~-.100 | ~-.312 | ~-.162
LAG 2
\ I.OND .118 .107 121 -.149 } -.065 | .020 .160
LAG 3
LOND .029 -.057 | .052 .092 .069 .071 -.040
LAG 4
LOND -.031 | .076 .0231 | ~-.082 | -.124 | -.137 | -.213

# OBS

578

996

1344

1529

1256

1014

580
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Table B.4. LATD & LOND Univariate Coefficients from Stepwise

Procedure.
LATITUDE BANDS
pep || tnpep | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
VAR | VAR
LATD || INTER- | .053 | .049 | .075 | .082 |.oe5 | .073 | .169
" I cEPT
LATD .778 | .975 | .705 |1.068 |1.080 |1.168 | 1.024
LAG 1
tATD | .010 |-.080 |.130 |-.182 |-.241 |-.211
LAG 2
LATD .092 .135
LAG 3 ‘
LATD .107
LAG 4
LATD | -.171 -.051 -.053 -.154
LAG 5
STAT || R-sorR | .685° | .733 | .647 | .793 |.s19 |.s01r | .762
MSE .026 | .033 |.o84 |.o65 |.088 |.120 |.246
# OBS | 578 996 1344 | 1529 |1256 | 1014 | 580
LOND || INTER- | .053 | .052 |.007 | -.034 |-.092 | -.177 | -.396
CEPT
LOND .847 | .s64 |.a89 [1.062 [1.113 |1.267 |1.004
LAG 1
LOND .204 -.122 | -.300
LAG 2
LOND .102 .125 | -.156
LAG 3
LOND .064 | .092 .083
LAG 4
LOND | -171 -.051 | -.087 | -.053 -.154

LAG 5
STAT ]| R-SQR .833 .810 .607 -| .835 .861 .851 .785 :

MSE

.046

.074

.224

.114

.135

.203

.509

# OBS

578

996

1344

1529

1256

1014

580
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Table B.5. LATD & LOND Univariate Coefficients

from BACKWARD

Procedure. -
LATITUDE BANDS 41
DEP INDEP | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
VAR || VAR
LATD {| INTER- | .053 .049 .075 .085 .065 .073 .169
CEPT : :
LATD .778 .975 .705 1.072 {1.080 | 1.168 | 1.024
LAG 1
LATD .010 | -,080 | .130 -.204 | ~-.241 | -.211
LAG 2
LATD .092 .135
LAG 3
LATD .107 .098 -
LAG 4
LATD -.171 ~.051 | -.087 | -.053 -.154
LAG 5
STAT || R-SOR .685 .733 .647 .795 .819 .801 .762
MSE . .026 .033 .084 .064 | .o088 .120 .246
# oBs | 578 996 1344 1529 1256 1014 580
LOND || INTER- | .053 .050 .007 -.034 | -.092 | -.177 | -.393
CEPT _
LOND .847 .882 .489 1.062 | 1.113 | 1.267 { 1.055
LAG 1
LOND -.073 | .204 -.122 | ~.300 | ~.157
| LAG 2 : DR
LOND .102 .074 .125 -.156 .138
LAG 3
LOND .064 .092 .083
LAG 4
LOND .050 -.082 | -.098 | -.138 | -.235
LAG 5
STAT || R-SQR .833 .811 .607 .835 .861 .851 .787
MSE .046 .074 .224 .114 .135 .203 .505
# oBs | 578 996 1344 1529 1256 1014 580
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Table B.6. LATD Bivafiate Coefficients (All Included).

LATITUDE BANDS

DEP | INDEP |10-15 |15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
VAR | VAR ' :
LATD | INTER- | .068 | .035 |.078 |.084 |.068 |.072 |.180
- || cePT |
LATD .782 | .971 | .897 |1.048 |1.066 |1.137 |1.046
LAG i
LATD .105 |-.088 |-.063 | -:.176 | -.231 | -.176 | .013
LAG 2 _
LATD |-.011 | .017 |.065 | .004 {.115 |.012 |~-.125
LAG 3 '
LATD .123 |-.030 |.062 |.081 |.028 |-.052|.103
LAG 4 i
LATD |[-.178 | .036 |=-.078 |-.087 |~-.070 | .013 |=-.175
LAG 5 ‘
LOND |=-.110 |-.016 |=-.215 [ -.131 |-.057 | ~.062 | -.030
LAG 1
LOND .058 | -.048 | .105 |.038 |.043 | .026 | .089
LAG 2 ' :
LOND |-.004 | .043 |.039 |.0530 |.022 |.000 |-.213
LAG 3
LOND .009 | .co6 |.oos8 |.o086 |-.022|.062 |.o051
LAG 4 : :
LOND .033 | .025 |.030 |-.064 |.018 |-.030 |.010
LAG 5 . 1 '
STAT | R-SQR | .693 | .737 |.676 |[.084 |.068 |.072 | .180
MSE .026 |.032 |.078 |.o61 |.o088 |.119 |.246
# oBs | 578 996 1344 | 1529 |1256 |1014 |s80
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Table B.7. LOND Bivariate Coefficients (All Included).

LATITUDE BANDS

pEP || InpEP | 10-15 | 15-20 | 20-25 | 25-30 { 30-35 | 35-40 | 40-45
VAR | VAR
LOND | INTER- | .048 | .058 | .053 |-.010 |-.044 | ~-.113 |~-.356
CEPT '
LATD .152 | .023 |=-.403 | .029 |.004 |-.006 |.200
LAG 1
LATD -.056 | -.076 | .231 |-.011 |~-.094 | -.051 |-.283
LAG 2 '
LATD .038 | -.052 |.041 [.033 |.002 |-.050].176
LAG 3
LATD |-.166 | .130 | =-.000 [=-.152 {.013 | =-.011 |-.117
LAG 4
LATD .071 |-.044 | .011 |.040 |-.026 |~-.003 |-.020
LAG 5 }
LOND .861 | .890 | .618 |1.059 |1.091 |1.236 |1.091
LAG 1
LOND |=~.032 [-.081 |.092 |-.005 |=.108 | ~-.294 |-.206
LAG 2
LOND .124 | .109 |.102 |-.015 |-.064 | .006 | .166
LAG. 3 '
LOND .032 |-.062 |.061 |-.097 [.070 | .063 |-.024
LAG 4
LOND -.040 | .076 |[.031 |[-.087 |-.093 | -.106 |-.227
I Jrac s 1 ]
STAT | R-SQR | .837 | .812 |.625 | .s38 | .s64 | .ss55 |.792
MSE .214 |.074 |.215 |.112 |.133 | .200 | .a98
# OBS | 578 996 1344 |[1529 |1256 |1014 |s80
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Table B.8. LATD Bivariate Coefficients from Stepwise Procedure.

LATITUDE BANDS

DEP INDEP' 10-15 { 15-20 | 20-25 25-30‘ 30-35 | 35-40 | 40-45
VAR VAR : ‘
ILATD INTER- | .068 .037 .078 .082 .065 .073 .169
CEPT
LATD .783 .971 .888 1.046 1]1.080 |1.168 |1.024
LAG 1 '
EIATD .099 -.075 -.179 | -.241 | -.211
LAG 2 '
LATD .135
LAG 3 .
I LATD .116 .097
LAG 4
LATD -.177 -.097 | -.053 -.154
LAG 5 :
LAG 1 ,
LOND .058 |-.063 | .077
LAG 2
LOND .046 .061 -.100
LAG 3
LOND .036
LAG 4
LCND .037 .027
LAG 5 -
_'m___——__‘a
STAT || R-SQR .693 .736 .674 .803 .819 .801 .762
MSE .025 .033 .078 .062 +.088 .120 .246
# OBS 578 996 1344 1529 1256 1014 580
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Table B.9. LOND Bivariate Coefficients from Stepwise Procedure.

LATITUDE BANDS

DEP
VAR

INDEP
VAR

10-15

15-20

20-25

25-30

30-35

35~40

40-45

LOND

STAT

INTER-
CEPT

.043

.052

.061

-.008

-0048

-.118

~-.373

LATD
LAG 1

.125

-.406

.030

.206

LATD
LAG 2

274

-0094

-.108

~.230

LATD
LAG 3

LATD
LAG 4

-.096

-.096

LATD
LAG 5

LOND
LAG 1

.839

.864

.623

1.056

1.092

1.241

1.089

LOND
LAG 2

.077

-.129

-.296

-.193

LOND
LAG 3

.110

.124

-.146

-138

LOND
LAG 4

.075

.090

.072

LOND
LAG 5

R-SQR

.836

.067

.810

.624

-.082

.838

-.067

.864

-.109

.855

-.233

i

.791

MSE

. 046

.074

.215

.112

.132

.199

.498

# OBS

578

996

1344

1529

1256

1014

580
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Table B.10. LATD Bivariate Coefficients from BACKWARD Procedure.

LATITUDE BANDS

DEP
VAR

INDEP
VAR

10-15

15-20

20-25

25-30

30-35

35-40

40-45

LATD

INTER-
CEPT

.068

.042

.079

.084

.067

071

.169

LATD
LAG 1

.783:

.975

.876

1.045

1.068

1.149

1.024¢

LATD
LAG 2

.099

-.079

-.171

-.232

-.208 .

LATD
LAG 3

.131

LATD
LAG 4

.116

.087

.084

LATD
LAG 5

-.177

-.081

_0088

-0055

--154

LOND
LAG 1

-.109

-.205

-.113

-0059

-.041

LOND
LAG 2

.058 -

-.058

.078

.061

LOND
LAG 3

.065

.064

-.074

LOND
LAG 4

.085

.043

LOND

.037

.030

-.064

MSE

.025

.033

.077

.061

.088

.119

«246

# OBS

578

996

1344

1529

1256

1014

580
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Table B.11. LOND Bivariate Coefficients from BACKWARD Procedure.
LATITUDE BANDS

DEP
VAR

INDEP
VAR

10-15

15-20

20-25

25-30

30-35

35-40

40-45

LOND

INTER-
CEPT

-043

.050

.061

-.002

-,048

-.119

-.373

LATD
LAG 1

.125

~-.406

. 206

LATD
LAG 2

.274

-.094

~.230

LATD
LAG 3

-.115

LATD
LAG 4

-.096

-.077

LATD
LAG 5

LOND
LAG 1

.839

.882

.623

1.054

1.092

1.231

1.089

T.OND
LAG 2

~.073

.077

-0129

-.262

-.193

LOND
LAG 3

.110

.074

.124

-.150

.138

LOND
LAG 4

.075

.091

MSE

.046

.074

.215

.112

.132

.199

.498

# OBS

578

996

1344

1529

1256

1014

580
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Table B.12. LATD Trivariate Coefficients (All Included).
[

LATITUDE BANDS
INDEP |10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
INTER- | .070 |.035 |.076 |.060 |.o19 |.o48 |.o10
CEPT ' 4
arp - | .775 |.972 |.897 |1.043 |1.061 |1.131 |1.030
LAG 1 ‘ i
LATD .100 |-.086 |-.065 | ~.174 |-.228 | -.177 ! -.001
LAG 2 . .
LATD -.013 | .014 |.067 |.000 |.121 |.o016 |-.129
LG
LATD .128 | -.029 | .060 |.078 |.029 |-.054 |.110
LAG 4 -
LATD -.183 | .033 |-.077 | -.083 | -.071 | .014 |-.170
LAG 5 , ,
LOND -.111 | -.027 | -.215 | -.134 | -.060 | -~.060 | -.032
LAG 1 -
LOND .058 |-.048 | .107 | .039 |.045 |.022 |.096
LAG 2 |
LOND -.013 | .041 |.038 |.053 |.021 |.002 |-.120
LAG 3
LOND .016 | .006 |.009 |.085 |-.023 |.060 |[.052
LAG 4 : |
LOND .032 | .026 |.029 |-.065]).016 |-.310 | .006
LAG 5 "
ws L1 |.002 |.o01 |.o02 |-.000 |.000 |.o004 |.oo04
ws L2 |-.003 |-.001 |-.002 | .002-|.004 |-.003].003
ws L3 |.002 |-.002|.002 |[.001 |-.003)]-.004{.004
WS L4 |[-.002 | .003 |-.001)-.0031{-.002].006 |-.015
ws L5 |.001 |-.001|.000 |.001 |.002 |-.003].007
'STAT | R-sorR | .695 | .738 |.677 | .s0e |.s21 |.sos |.772
: MSE .026 |.033 |[.078 |.o61 |.oss8 |.119 |.241
# OBs |578 996 1344 {1529 |1256 |1014 |s80

80

o




Table B.13. LOND Trivariate Coefficients (All Included)

LATITUDE BANDS

[N T

—
DEP INDEP | 10-15 | 15-20 | 20-25 | 25~30 | 3C-35 | 35-40 | 40-45
LOND J INTER- | .100 .054 .039 -.057 | -.076 | -.095 | -.169
CEPT
LATD .155 .083 -.401 | .029 -.n01 | -.018 | .193
LAG 1 ‘
LATD -.053 | -.082 | .233 -.014 | -.093 | -.041 | -.276
LAG 2
LATD .045 -.060 | .034 .030 .003 -.057 | .176
LAG 3 :
LATD -.160 | .136 .ooh -.151 | .010 -.006 | -.133
LAG 4 f
LATD .066 -.035 | .010 .043 -.026 | .008 -.003
LAG 5 \
LOND .859 .878 .617 1.055 | 1.089 | 1.233 |1.083
LAG 1 |
LOND -.031 | -.068 .osi -.003 | -.108 | -.291 | -.212
1AG 2 %
LOND .121 114 .10% -.148 | -.065 | .005 .182
LAG 3 |
LOND .033 -.060 .osé .097 .070 .068 -.033
LAG 4 |
LOND -.036 | .072 .osi -.082 { -.094 | -.110 | -.218
LAG 5 :
Wws L1 | -.002|-.002 |-.0011}|.000 .003 -.001 | -.009
WS L2 .001 -.002 | .003 .002 -.004 | .007 .007
WS L3 .003 .003 -.000 | -.002 | .003 -.002 , -.004
WS 4 | -.003 | .002 -.001 | -.001 | .001 -.007 | -.019
WS LS .000 -.001 | .000 .002 -.001 | .002 -.016
STAT § R-SQR | .840 .815 .625 .839 .865 .856 .796
MSE .045 .073 .216 .112 .133 .199 .493
# OBS | 578 996 1344 1529 1256 1014 580
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Table B.14. LATD Trivariate Coefficients from Stepwise rrocedure.

LATITUDE BANDS
e : -
DEP INDEP | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
LOND | INTER- | .068 .N37 . | .078 .060 .019 .073 .001
CEPT : ‘
LATD .783 .971 .888 1.040 }1.075 1 1.168 §1.002
LAG 1
LATD .099 | -.075 -.172 | -.241 | -.211
LAG 2
LATD .134
LAG 3
LATD .166 .079
LAG 4
LATD | -.176 ~-.085 | -.056 -.148
LAG 5 ' :
LOND -.109 -.208 | -.114
LAG 1
1 LOND .058 | ~-.063 ] .077
LAG 2
LOND .046 .061 .074
LAG 3
| LOND .036 .085
LAG 4
LOND .037 .027 -.066
LAG 5 -
WS L1 \ .001 .007
|
WS L2 | .002
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Table B.15. LOND Trivariate Coefficients from Stepwise Procedure.

DEP

LATITUDE BANDS

10-15

15-20

20-25

25-30

30-35

35-40

40-45

LOND

.094

.052

.061

-.046

-0048

-.094

~-.183

122

~-.406

.198

2

.275

| -.094

-.109

-.022

-.089

.834

.864

.623

1.092

1.238

1.080

077

-.129

-.295

-.200

.110

.124

.152

- S e e

.075

.075

.067

-.067

-.111

-.230

-.005

.005

&3




Table B.16. LATD Trivariate Coefficients from Backward Procedure.

) LATITUDE BANDS
DEP HINDEP 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
LOND f§ INTER- | .071 .034 .080 .060 .021 | .o071 .016
CEPT
LATD .775 .968 | .876 |1.040 |1.064 |1.149 | .095
i LAG 1 ' :
LATD .094 | -.072 -.172 | -.230 | -.208
LAG 2 | ‘
LATD .129
LAG 3
LATD .115 .087 .079
LAG 4 —_
7 . LATD -.176 -.081 | -.085 | -.059 -.146
LAG 5 ,
LOND -.111 -.205 | -.114 | -.061 | -.042
LAG 1 '
LOND .055 | -.066 | .078 .059
f LaG 2 ‘
LOND .046 .064 .074
LAG 3
LOND .085 .043
LAG 4 '
LOND .038 .029 | .030 |-.066
LAG 5 ' .
Wws L1 | .002 .001 - .006
Ws L2 | -.002 .002 .001
WS L3 -.003 -.001
WS L4 .002 -.003
l# OBS | 578 996 1344 |1529 |1256 | 1014 | ss0




Table B.17. LOND Trivariate Coefficients from Backward Procedure.

LATITUDE BANDS

i DEP

INDEP

10-15

15-20

20-25

25-30

30-35

35-40

40-45

?EDND

INTER-
CEPT

.096

.052

.061

-.046

-.048

-.094

-.183

LATD
LAG 1

.131

-.406

.198

LATD
LAG 2

-.075

.275

1-.094

-.109

-.225

LATD
LAG 3

LATD
LAG 4

-.087

.075

-.080

LATD

I.2G 5

F..()ND
LAG 1

.838

+866

.623

1.051

1.092

1.238

1.080

LOND
LAG 2

.077

-0129

--295

-0200

LOND
LAG 3

.110

.124

--149

.152

LOND
LAG 4

.075

.091

075

LOND
LAG 5

0070

-.079

-.067

-Clll

-.230

WS L1

-.002

-.003

-.005

.005

.004

.003

-.003

-.005

.018

MSE .045 .073 .215 .112 .132 .198 .491
# OBS 578 996 1344 | 1529 1256 1014 580
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Table B.18. Wind Speed Coefficients (All included).

LATITUDE BANDS
rDEP INDEP 10-15 | 15-20 | 20~25 | 25-30 | 30-35 | 35-40 40-45
WS INTER- | .427 | 1.753 |1.421 | 2.680 | 2.894 | 2.572 | 4.156
CEPT ) '
LATD -904 .364 2.780 | .643 .311 .148 -.076 |
I LAG 1
LATD 1.813 | -.389 | -2.45 | ~.200 | -.785 | .910 .468
LAG 2
LATD -1.46 | .662 1.664 | -.014 | .330 -139 -.997
LAG 3
LATD . 243 -.210 | -.328 | .429 .144 -.817 | .460
LAG 4 :
LATD .555 .340 .286 -.344 | -.285 | .398 -.324
LAG 5 ‘
LOND .204 .416 -.836 | .301 .344 .160 .329 H
LAG 1
LOND 572 -.730 | .985 -.384 | -.570 | =-.312 | -.215
LAG 2
LOND -.732 | -.433 | -.491 | .539 |-.055 | .298 | -.537
LAG 3
LAG 4 _ :
IIDND .128 .098 -.108 | .798 .509 |} -.232 | -.316
LAG 5 I
WS Ll 1.470 11.430 |1.424°11.414 }1.342-]11.355 |1.167
WS L2 |-.446 | -.401 |-.481 | -.413 | -.249 | -.249 {-.110
fws L3 -.069 | -.011 | .028 .029 -.140 | -.147 | -.191
| WS L4 .042 -.038 | .001 -.127 | .G29 .016 .066
Ws L5 |-.016 | -.014 | .003 .052 -.026 | -.022 | -.030
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Table B.19. Wind Speed Coefficients (Stepwise & BackwarD).

LATITUDE BANDS

e

DEP nINDEP

10-15

15-20

20-25

25-30

30-35

35-40

40-45

WS

STAT

INTER~
CEPT

.422

2.212

1.565

2.611

2.795

2.345

4.140

LATD
“JLAG 1

1.697

LATD
LAG 2

2.032

LATD
LAG 3

-.471

LATD
LAG 4

LATD
LAG 5

LOND
LAG 1

LOND
LAG 2

LOND
LAG 3

LOND
LAG 4

.883

LOND
I1AG 5

.466

<447

WS L1

1.487

1.436

1.409

1.409

1.342

1.359

1.164

WS L2

-.505

~.409

-.436

~.394

-.243

-0243

-.106

WS L3

-.144

-.162

~-.156

wo L4

-.061

-.109

WS L5
R-SQR

.972

.963

.957

.050
.960

. 969

.960

.924 |

MSE

21.71

36.53

39.76

35.94

18.14

18.20

23.56

# OBS

578

996

1344

1529

1256

58GC

87

1014




Table B.20. LATD - FINAL Trivariate Coefficients.
LATITUDE BANDS
DEP § INDEP | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45

LATD § INTER- | .065 .044 .091 .066 .019 .079 .029

LATD . 766 .954 .880 1.036 | 1.081 |1.132 | .996

LATD .107 -.063 -.158 | =.253 | -.193

//////// | LATD | | .138

LATD .088 .075 .068 -.073

b
3]
[ V]
v m—u

LATD -.143 -,087 | -.079 o} =.137

LOND -.105 ‘ -.206 | -.114 | -.053 | -.057

LOND .054 -.034 ] .078 l

I LOND .065 | .o98 | .os1 - | -.070 i

I LOND .129 .065 H

LOND .038 .039 .030 » -.066

L . WS L1 |.002 | .o01 _ .001
o= -t fus L2 |-.002 | -1 .007
' WS L3 -.001 " .002

fws La ‘ -.002 -.005
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Table B.21. LOND - FINAL Trivariate Coefficients.

LATITUDE BANDS

per I tnpep | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45

LOND § INTER- | .085 | .049 | .058 |-.057 | -.039 |-.103 | -.153
CEPT ~ '
LAG 1

| LATD .251 -.208
LAG 2
LATD -.129 l
LAG 3
LATD -.179 -.078
LAG 4
LATD .109 -.056
LAG 5 |
LOND .840 | .855 |.634 |1.049 {1.102 |1.216 |1.062
LAG 1 :
LOND .093 -.073 | -.246 | -.152
LAG 2 g :
LOND .116 .119 | -.142 | -.081 .106
LAG 3
LOND .065 | .064
LAG 4
LOND .075 -.063 | -.043 | -.078 | -.218
LAG 5 '
WS L1..|-.001 -.006
WS L2 ~.005 .001 .005
WS L3 .005
WS L4 -.005 | .015
WS LS -.013
R-SQR | .840 | .817 | .647 | .837 | .s63 | .s65 | .799
MSE .046 | .071 |.z206 |.112 |.137 | .192 | .a79
# oBs | 659 1140 |[1467 |16%6 |1346 | 1006 | 590
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Table B.22. WS FINAL Trivariate Coefficients.

LATITUDE BANDS

10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45
1.617 |1 2.748 |1 2.825 | 2.380 | 4.300

. iDEP INDEP

WS INTER- | .586 2.116
CEPT
LATD 1.457 1.529




Appendix C. Summary Statistics on the Modc'-Building Data Set

Table C.1. MEAN (S'i‘D) 6 Hour Forecast Summary Statistics on Test

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

6HR FORECAST

MODEL ¢ DIST W3 LAT LON
1.CURRY 7069. 17.0(24.4) 0.2(5.8) 0.1(0.3) =0.1(0.4)
2.UNI FULL 7069. 14.1(22.5) =0.2(5.8) 0.0(0.3) 0.0(0.4)
3.UNI STEP 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0{0.4)
4 .UNI BACK 7069. 14.1(22.5) =-0.2(5.8) 0.0(0.3) 0.0(0.4)
5.BI FULL 7069. 14.0(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)
6.BI STEP 7069. 14.4(22.3) -0.2(5.8) 0.0(0.3) 0.0(0.4)
7.BI BACK 7069. 14.2(22.2) ~0.2(5.8) 0.0(0.3) 0.0(0.4)
8.TRI FULL 7069, 15.3(22.5) =-0.2(5.8) 0.0(0.3) 0.0(0.4)
9.TRI STEP 7069. 15.0(22.2) -0.2(5.8) 0.0(0.3) 0.0(0.4)
10.TRI BACK 7069. 14.0(22.1) -0.2(5.8) 0.0(0.3). 0.0(0.4)
11.CURRY NEW 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)

Table C.2. MEAN (STD) 12 Hour Forecast Summary Statistics on Test

WS MATKIX: WS BACK (351 storms used in parameter estimation)
DATA: MODEL BUILDING DATA BASE (351 storms)

12HR FORECAST
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MODEL f DIST WS LAT LCN
1.CURRY 6735. 48.7(45.3) =0.3(9.9) 0.2(0.7) =0.3(1.0)
2.UNI FULL 6734. 42.2(39.9) -0.3(9.8) 0.0(0.6) 0.0(0.9)
3.UNI STEP 6734. 42.3(40.0) -0.3(9.8) 0.0(0.6)  0.0(0.9)
4.UNI BACK 6734. 42.3(39.9) -0.3(9.8) 0.0(0.6) 0.0(0.9)
5.BI FULL 6734. 41.7(39.1) =-0.3(9.8) 0.0(0.6) 0.0(0.9)
6.BI STEP 6734. 42.9(3%.8) -0.3(9.8) 0.0(0.7) 0.0(0.9)
7.BI BACK 6734. 42.2(39.5) =0.3(9.8) 0.0(0.6) 0.0(0.8)
8.TRI FULL 6735. 44.9(41.4) -0.3(9.8) =0.1(0.7) 0.0(0.8)
9.TRI STEP 6734. 44.4(39.4) -0.3(9.3) =-0.1(0.7) 0.0(0.9)
10.TRI BACK 6734. 41.5(39.2) =-0.3(9.8) 0.0(0.6) 0.0(0.9)
11.CURRY NEW 6734. 41.9(40.0) =-0,3(9.8) 0.0(0.6) 0.0(0.9)




Table C.3. MEAN (STD) 24 Hour Forecast Summary Statistics on Test

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storus)

24HR FORECAST .
MODEL # DIST WS LAT LON
1.CURRY 6083. 120.0(95.1) =-0.1(15.6) 0.5(1.6) =0.7(2.3)
2.UNI FULL . 6061. 106.0(80.5) 0.0(15.6) 0.0(1.4) 0.0(2.0)
3.UNI STEP 6060. 106.2(20.6) 0.0{15.6) 0.0(1.4) 0.0(2.0)
4.UNI BACK 6060. 106.1(80.5) 0.0(15.6) 0.0(1.4) . 0.0(2.0)
5.BI FULL. 6062. 104.6(78.2) 0.0(15.6) =0.1(1.4) 0.0(2.0)
6.BI STEP 6060. 108.6(81.0) 0.0(15.6) 0.1(1.6) 0.0(2.0)
7.BI BACK 6061. 106.4(79.4) - 0.0(15.5) 0.0(1.5) 0.0(2.0)
8.TRI FULL 6052, 113.6(88.3) 0.0(15.6) =-0.3(1.7) =0.1(2.0)
9.TRI STEP 6063. 112.5(80.4) -0.1(25.6) =-0.4(1.6) =0.1(2.0)
10.TRI BACK  6065. 103.5(78.2) 0.0(15.6) =-0.1(1.4) 0.0(2.0)
11.CURRY NEW 6063. 105.0(80.4) 0.0(15.5) =0.1(1.4) 0.0(2.0)

Table C.4. MEAN (STD) 48 Hour Forecast Summary Statistics Test

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 stuims)

48HR FORECAST :

MODEL # DIST Ws LAT LON
1.CURKY 4878. 2€69.8(196.4) 1.7(21.6) 1.2(3.2) =1.7(5.1)
2.UNI FULL 4740. 250.0(170.6) 1.8(21.7) =-0.2(3.1)  0.1(4.8)
3.UNI STEP 4740. 250.3(169.0) 1.8(21.7) -0.2(3.1) 0.2(4.7)
4.UNI BACTK 4741. 250.5(170.4) 1.8(21.7) -0.2(3.2) 6.1(4.8)
5.BI FULL 4745. 246.2(163.7) 1.8(21.7) =0.3(3.1) 0.4(4.6)
6.BI STEP 4741. 259.1(177.6) 1.9(21.7) 0.1(3.6) 0.1(4.6)
7.BI BACK - 4741. 253.3(172.7) 1.8(21.7) 0.0(3.4) 0.1(4.6)
8.TRI FULL 4550. 254.1(173.3) 2.0(21.9) =-0.3(3.5) =-0.1(4.5)
‘9.TRI STEP 4742. 267.9(173.3) 1.8(21.7) =1.4(3.5) 0.3(4.6)

10.TRI BACK 4740. 242.2(163.7) 1.7(21.7) =-0.3(3.1) 0.1(4.5)

11.CURRY NEW 4738. 245.3(168.0) 1.8(21.7) =0.3(3.1) 0.1(4.6)
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Table C.5. MEA"  TD) 72 Hour Forecast Summary Statistics Test

WS MATRIX: Ws paCK (351 storms used in parameter estimation)

DATA:

72HR FORECAST
MODEL
1.CURRY
2.UNI FULL
3.UNI STEP
4 .UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK"
8.TRI FULL
9.TKI STEP
10.TRI BACK

#

3881.
3642.
3638.
3638.
3636.
3636.
3641.
3439.
3596.
3648.

11.CURRY NEW 3637.

Table C.6.
WS MATRIX:
DATA:

6HR FORECAST
MODEL
1 .CURRY
2.UNI FULL
3.UNI STEP
4.UNI BACK
5.BI FULL
6.BI STEP
7 .BI BACK
8.TRI FULL
9.TRI STEP
10.TRI BACK
11.CURRY NEW

7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.
7069.

DIST
406.7(284.9)
386.2(246.1)
387.8(246.6)

387.7(246.6)

380.2(237.3)
404.6(273.6)
395.4(264.2)
383.3(242.5)
426.4(268.4)
375.8(240.0)
378.8(241.4)

DIST
885.23

. 705.33

707.08
706.04

-~

686.10

707.29

695.96 -

739.67
717.54
685.49
705.70
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MODEL BUILDING DATA BASE (351 storms)

WS

3.4(24.2)

3.7(24.6)
3.€(24.6)
3.6(24.6)
3.£(24.6)
3.9(24.6)
3.7(24.6)

4.0024.9)

4.5(24.7)
3.7(24.6)
3.7(24.5)

MODEL BUILDING DATA BASE (351 storms)

WS
34.00
34.00
34.00
34.00
34.00
34.00
34.00
34.00
34.00
34.00
34.00

LAT

1.7(4.5)
-0.6(4.6)
-0.5(4.6)
-0.5(4.6)
-0.7(4.6)

0.1(5.4)

0.0(5.1)
-0.3(4.9)
-2.6(5.2)
-0.6(4.6)
-0.6(4.6)

LAT
0.11
0.09
0.09
0.09
0.08
0.09
0.09
- 0.10
0.09
0.08
0.09

LON
=2.7(7.7)
0.5(7.4)
0.5(/.4)
0.5(7.4)
0.9(7.90)
0.3(7.3)
0.3(7.2)
~0.1(6.9)
1.3(7.3)
0.5(7.1)
0.5(7.1)

MSPR 6 Hour Fcrecast Summary Statistics on Model

WS BACK (351 storms used in parameter estimation)

LON

0.21
0.17
0.17
0.17
0.16
0.16

0.16 )

0.16
0.16
0.16
0.17




.———

Table C.7. MSPR 12 Hour Forecast Summary Statistics on Model

DATA: MODEL BUILDING DATA BASE (351 stormé)

12HR FORECAST

MODEL F "~ DIST , WS
1.CURRY . 6735, 4419.33 . 97.17
2.UNI FULL 6734. 3372.48 96.91
3.UNI STEP 6734. 3384.61 96.93
4.UNI BACK  6734. 3379.43 96.92
5.BI FULL 6734. 3261.92 96.92
6.BI STEP 6724. 3424.98 96.95
7.BI BACK 6734. 3337.13 96.95
8.TRI FULL 6735. 3724.98 96.97
9.TRI UTEP 6734, 3524.12 © 96.95

10.TRI BACK 6734, 3258.57 96.93
11.CURRY NEA4 6734. 3355.13 96.91

Table C.8. MSPR 24 Hour Forecast Summary Swatistics on Model
WS MATRIX: WS BACK (351 storms used in parameter
DATA: MODEL BUILDING DATA BASE (351 storms)

24HR FORECAST

MODEL K DIST WS
1.CURRY 6083, 23453.96 242.137
2.UNI FULL 6061. 17719.36 241.80
3.UNI STEP 6060. 17771.14 241.94
4 .UNI BACK 6060. 17737.66 241.93
5.BI FULL 6062, 17043.48 241.81
6.BI STEP 6060. 18346.14 241.99
7.BI BACK 6061. 17624.23 241.76
. 8.TRI FULL 6052. 20703.30 242.00

9.TRI STEP 6061, 19133.20 241.95
10.TRI BACK 6065. - 16838.73 241.77
11.CURRY NEW 6063. 17487.40 241.59

WS MATRIX: WS BACK (351 storms used in parameter estimation)

LAT

0.54
0.41
0.41
0.41

.0.40

0.44
0.42
0.53
0.47
0.40
0.40

estimation)

LAT

2.70
2.07
2.09
2.08
2.02
2.42
2.23
3.11
2.67
2.02
2.05

LON

1.00
0.75
0.75

. 0.75

0.73
O L 72
0.72
o.. 72

0.73

0.73
0.75

LON
5.62

4.13
4.13
4.13
3.92
3.87
3.86
3.83
3.84
3.84
4.05




Table C.9. MSPR 48 Hour Forecast Summary Statistics on Model

WS MATRIX: WS BACK (351 storms used in parameter estimation)
DATA: MODEL BUILDING DATA BASE (351 storms)

48HR FORECAST

MODEL ¥ .DIST WS LAT LON

. 1.CURRY 4878. 111336.02 467.29 11.60 28.38
2.UNI FULL 4740. 91587.85 473.45 9.92 22.68

3.UNI STEP 4740. 91186.86 473.78 9.95 22.44

4.UNI BACK 4741. 91748.20 473.90 10.00 22.61

5.BI FULL 4745. 87430.01 473.01 9.82 21.05

6.BI STEP 4741. 98658.22 = 473.86 12.78 21.17

7.BI BACK 4741. 93966.67 473.84 11.56 21.09

8.TRI FULL 4550. 94616.66 484.41 12.41 20.03

9.TRI STEP 4742. 101821.97 472.05 14.10 20.81

10.TRI BACK 4740. 85437.84 472.91 9.62 20.54
11.CURRY NEW 4738. 88371.16 473.29 9.81 21.46

Table C.10. MSPR 72 Hour Forecast Summary Statistics on Model
WS MATRIX: WS BACK (351 storms used in paramefer estimation)
DATA: MODEL BUILDING DATA BASE (351 storms)

72HR FORECAST

MODEL # DIST WS LAT LON
1.CURRY 3881. 246557.88 594.44 23.44 66.09
2.UNI FULL 3642. 209730.17 619.33 21.28 54.32
3.UNI STEP 3638. 211204.59 618.14 21.53 - 54.55
4 .UNI BACK 3638, 211062.67 617.94 21.49 54.55
5.BI FULL 3636. 200811.08 619.01 21.22 50.31
6.BI STEP 3636. 238521.62 621.53 29.35 53.44
7.BI BACK 3641. 226068.36 618.58 26.51 52.63
8.TRI FULL 3439. 205692.69 636.55 24.34 47.00
9.TRI STEP 3596. 253823.28 631.58 34.06 54.53

10.TRI BACK 3648. 198780.30 616.60 21.12 49.96
11.CURRY NEW 3637, 201737.72 616.22 21.49 50.43
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Appendix D. Summary Statistics on Test Data Set

Table D.1. MEAN (STD) 6 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA:

6HR FORECAST
MODEL
1.CURRY -
2.UNI FULL
3.UNI STEP
4.UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP
10.TRI BACK
11.CURRY NEW

#

7680'
768.

768.
768.
768.
768.
768.
768.

768.

768.
768.

TEST DATA BASE (45 storms)

DiST
18.6(22.9)
15.6(21.7)
15.7(21.5)
15.8(21.6)
15.3(21.2)
15.6(21.6)
15.5(21.4)
15.5(21.8)
15.7(21.6)
15.4(21.4)
15.2(21.2)

WS
-0.5(5.5)
-0.5(5.5)
~0.5(5.5)
-0.5(5.5)

~0.5(5.5)

-0.5(5.5)
=0.5(5.5)

-0.5(5.5)
. =0.5(5.5)

-0.5(5.5)
-0.5(5.5)

LAT
0.1(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)
0.0(0.3)

Table D.2. MEAN (STD) 12 Hour Forecast Statistics of Test Data Set

LON
-0.1(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)
0.0(0.4)

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA:

~.12HR FORECAST

MODEL
1.CURRY
2.UNI FULL
3.UNI STEP
4 .UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP
10.TRI BACK
11.CURRY NEW

4
727.
727.
727.
727.
727.
727.
727.
727.
727.
727.
727.

TEST DATA BASE (45 storms)

DIST
51.8(45.4)
44.8(41.5)
44.7(41.5)
44.8(41.5)
44.1(39.7)
45.8(40.5)
44.8(40.0)
45.1(41.1)
46.0(40.4)
44.3(39.7)

- 44.2(39.6)

ws

-1.0(9.8)
-1.0(9.8)
-1.0(9.8)
-1.0(9.8)
-100(9.8)

-1.0(9.8).

-1.0(9.8)
-1.0(9.8)
-1.0(9.8)
-1.0(9.8)
~1.0(9.8)

LAT
0.2(0.8)
0.0(0.7)
0.0(0.7)
0.0(0.7)
0.0(0.7)
0.0(0.7)
0.0(0.7)
0.0(0.7)

-0.1(0.7)
0.0(0.7)
0.0(0.7)

LON
-0.3(1.0)
0.0(0.9)
0.0(0.9)
0.0(0.9)
0.0(0.8)
0.0(0.8)
0.0(0.8)
0.0(0.8)
-0.1(0.8)
0.0(0.8)
0.0(0.8)




Table D.3. MEAN (STD) 24 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parémeter." estimation)

DATA:

24HR FORECAST

MODEL
1.CURRY
2.UNI FULL
3.UNI STEP
4 .UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP

10.TRI BACK

#

' 647.

644.
644.
644.
644.
644.
644.
644.
644.
644.

11.CURRY NEW 644.

DIST

128.7(106.8)

116.4(97.5)
116.3(97.7)
116.4(97.6)
113.8(92.8)
118.5(95.6)
116.0(93.6)
116.5(97.4)
120.0(95.8)
113.8(93.0)
114.1(93.1)

TEST DATA BASE (45 storms)

WS
-1.5(15.8)
-1.6(15.9)
-1.6(15.9)
-1.6(15.9)
-1.5(15.9)
-1.5(15.9)
-1.6(15.9)
-1.5(15.9)
-1.6(15.9)
-1.5(15.9)
-1.5(15.9)

LAT
0.6(1.8)

- 0.1(1.7)

0.1(1.7)
0.1(1.7)
0.0(1.7)
0.1(1.8)
0.1(1.7)
0.1(1.8)
-0.3(1.8)
0.1(1.7)

LON
-0.7(2.4)
=-0.1(2.2)
=-0.1(2.2)
-0.1(2.2)
-0.1(2.1)
-0.1(2.1)
-0.1(2.1)
-0.1(2.1)
-0.2(2.1)
-0.1(2.1)
-0.1(2.1)

0.1(1.7)

" Table D.4. MEAN (STD) 48 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

48HR FORECAST

MODEL # DIST WS LAT LON
1.CURRY 501. 287.1(227.0) -1.8(19.3) 1.2(3.7) -1.6(5.4)
2.UNI FULL 485. 270.9(212.4) -=-2.1(19.7) 0.0(3.7) =-0.1(5.2)
3.UNI STEP 484. 270.1(210.1) =-2.1(19.7)  0.1(3.7) =0.1(5.2)
4 .UNI BACK 484. 270.3(210.3) =-2.1(19.7) 0.0(3.7) =-0.1(5.2)
5.BI FULL 486. 269.9(207.7) =-2.1(19.7) =0.1(3.7) =0.1(5.1)
6 .BI STEP 484. 272.9(207.9) =-2.1(19.7) 0.0(3.9) =-0.2(5.1)
7 .BI BACK 486. 271.5(208.2) =-2.0(19.7) =-0.1(3.8) =0.2(5.0)
8 .TRI FULL 481. 274.0(217.5) =-2.0(19.8) 0.1(4.0) =-0.4(5.0)
9.TRI STEP 486. 285.0(210.7) =-2.1(19.7) -0.9(4.0) =-0.1(5.1)
10.TRI BACK 488. 267.6(206.3) =-2.0(19.7) =-0.1(3.8) =0.2(5.0)
11.CURRY NEW 486. 270.7(206.7) ~2.0(19.7) =0.1(3.7) =-0.2(5.1)




Table D.5. MEAN (STD) 72 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA:

"72HR FORECAST

MODEL
1.CURRY -

. 24UNI FULL
3.UNI STEP
4.UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP
10.TRI BACK
11.CURRY NEW

#
397.
377.

377.

377.
378.

- 374.

377.
362.
375.
377.
378.

- DIST
409.8(326.3)

416.7(310.5)

416.2(310.3)
417.1(310.9)
420.7(308.5)

1 417.6(315.4)

419.7(317.6)
429.5(321.6)
440.9(316.4)
415.0(305.7)
424.5(311.5)

TEST DATA BASE (45 storms)

WS
-2.4(20.6)
-2.9(21.0)
~2.8(21.0)
-2.8(21.0)
-2.9(21.1)
-2.9(21.2)
-2.8(21.1)
-2.7(21.3)
-2 6(21.4)
-2.8(21.1)
-2.8(21.1)

LAT

1.8(5.2)
=0.3(5.5)
-0.1(5.5)
=0.2(5.5)
~0.5(5.5)
-0.2(5.7)
-0.4(5.6)

0.0(6.1)
-1.5(5.8)
~0.4(5.5)

=0.3(5.6)

_Table D.6. MSPR 6 Hour Forecast Statistics of the Test Data Set

LON
-2.5(7.6)
0.2(8.0)
0.2(8.0)
0.2(8.0)
1 0.1(8.1)
-0.2(8.0)
-0.1(8.1)
-0.9(7.8)
0.1(8.2)
0.0(7.9)
-0.1(8.2)

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA:

6HR FORECAST
MODEL
1.CURRY
2.UNI FULL
3.UNI STEP
4.UNI BACK

5.BI FULL

6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP
10.TRI BACK
11.CURRY NEW

768.

768.
768.
768.

768.

768.
768.
768.
768.
768.
768.

- DIST
868.53
712.57
710.17
712.91

682.70 -

706.34
695.38
-715.37
714.24
695.54
680.63

98

TEST DATA BASE (45 storms)

WS

- 30.09
30.09
30.09
30.09

. 30.09

30.09
30.09
30.09
30.09
30.09
30.09

T
0.13
0.11
0.11
0.11
0.10
0.11
0.11
0.11
0.11
0.10
0.10

LON
0.18
- 0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14




~ Table D.7. MSPR 12 Hour Forecast Statistics of the Test Data Set

WS MATRIX:

DATA:

12HR FORECAST

MODEL
1.CURRY
2.UNI FULL
3.UNI STEP

4 .UNI BACK

5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP

10.TRI BACK

# .
727
727.

- 727.

727.
727.
727.
727.
727.

- 727.

727.

11.CURRY NEW 727.

Table D.8. MSPR 24 Hour Forecast Statistics of the Test Data Set

' WS MATRIX:

DATA:

24HR FORECAST

MODEL
1.CURRY
2.UNI FULL
3.UNI STEP
4.UNI BACK
5.BI FULL
6.BI STEP
7.BI BACK
8.TRI FULL
9.TRI STEP

10.TRI BACK
11. Y NEW

647.
644.
644,
644.
644.
644.
644.
644.
644.
644.
644.

TEST DATA BASE (45 storms)

DIST
4738.33
3721.29
3719.94
3725.77

3516.11

3731.85
3605.24

3716.70

3746.27
3532.88
3520.84

TEST DATA BASE (45 storms)

DIST
27953.86
23035.03
0 23048.82
23050.85
21545.08
23167.71
22214.30
23051.05
23559.33
21569.52
21677.14

R R R ST T R R e

WS
96.27
96.36
96.44
96.45
96.17
96.22
96.21
96.35
96.31
96.18
96.18

WS
252.45
254.82
254.45
254.50
254.26
253.87
254.49
254.75
254.29
254.27
254.17

LAT

. 0.62

0.51
0.51
0.51

0.47

0.53
0.50
0.52
0.53
0.47
0.46

LAT

3.41
3.00
3.00
3.00
2.78
3.27
3.00
3.21
3.36
2.81
2.76

i A AR R AR T i o

WS BACK (351 storms used in parameter estimation)

LON

1.00
0.73
0.73
0.74
0.70
0.70
0.70
0.71
0.71
0.71
0.71

WS BACK (351 storms used in parameter estimation)

LON

6.31
4.77
4.77
4.77
4.49
4.45
4.46
4.47
4.48
4.46
4.57




Table D.9. MSPR 48 Hour Forecast Statistics of the Test Data Set
WS MATRIX: WS BACK (351 storms used in parameter estimaticn)

DATA: TEST DATA BASE (45 storms)

48HR FORECAST

. MODEL 20 " DIST ws LAT LON
1.CURRY 501. - 133809.02 375.54 15.01 32.05
2.UNI FULL 485. 118394.72 392.28 13.84 27.00
3.UNI STEP 484.° 117027.34 391.32 13.43 27.03
4.UNI BACK 484. ©117177.00 391.38 13.46 27.05
5.BI FULL 1 486. 115918.79 391.37 13.98 26.00
6.BI STEP 484. 117614.91 390.59 14.90 25.50
7.BI BACK 486. 116929.97 390.47 14.70 25.47
8.TRI FULL 481. 122253.40 394.09 16.21 25.03
9.TRI STEP 486. 125552.82 390.86 16.64 26.28
‘10.TRI BACK 488. 114066.02 389.80 14.06 25.16

115928.04 -390.05 13.78 26.21

11.CURRY NEW 486.

Table D.10. MSPR 72 Hour Forecast Statistics of the Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 stornms)

72HR FORECAST

DIST

MODEL 1 WS LAT 1ON
1.CURRY 397. 274112.28 427.93 30.45 "64.59
2.UNI FULL 377. 269748.00 449.55 30.34 64.41
3.UNI STEP 377. 269224.75 447.18 30.19 64.38

--4.UNI BACK 377. . .....270342.22 447.11 30.37 . 64.58 |
5.BI FULL -378. 271941.03 451.93 30.86 65.32
6.BI STEP 374. 273584.81 454.78 32.15 63.46
7.BI BACK 377. 276816.19 453.90 31.58 66.17
8.TRI FULL 362. 287606.34 458.87 36.98 61.45
9.TRI STEP 375. 294289.78 461.23 35.68 67.51
10.TRI BACK 377. 265396.12 450.27 30.61 62.72
11.CURRY NEW 378. 277001.84 451.27 31.04 66.90
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Appendix E. Latitude Band Summary Statistics

Table E.1. Latitude Band Statistics for TRI BACK Model Building Data Set

Latitude Band (10-15N degrees)

WS STDEV n

FORECAST # OBS MEAN STDEV WS MEAN
l— 6HR 573.' 6.7653 12.2422 0.1281 5.1500 ﬂ
12HR 560. 23.6436 21.9744 0.1112 9.1307
24HR 539. '62.2748 52.4679 ~0.0477 16.0402
48HR 495, 151.9235 107.7578 -1.5302 25.7951
| '72HR 454. 248.9276 163.7661 =3.2511 30.2339
"Latitude Band (15-20N degrees)
: SR
IIFORECAST # OBS MEAN STDEV WS MEAN - WS STDEV
'I 6HR 1093 9.697 26.8171 0.3991 6.7007
l 12HR 1064 31,340 39.4336 0.8182 11.5994
lﬁ 24HR 1008 77.606 56.8642 1.8014 18.4160
I 48HR 909 186.013 104.8636 2.0806 24.8898
L=1422HR 820 300.984 166.7077 1.0684 27 .4578
Latitude Band (20-25N degrees)
IFORECAST # OBS MEAN STDEV WS MEAN WS STDEV
I 6HR 1325 11.749 18.7925 -0.0465 6.1376
I 12HR 1302 35.189 35.3651 -0.1479 10.8514
24HR 1253 87.757 69.1663 -0.7282 17.5982
48HR 1114 219.010 156.2066 -2.3232 23.4018
L 72HR 925 363.820 253.2657 -3.4279 25.5090
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Latitude Band (25-30N degrees)

o

FORECAST # OBS ' MEAN STDEV WS MEAN WS STDEV
6HR 1485. 12.5877 18.7460 0.3335 6.8726
12HR 1423. 39.9149 33.8797 0.4782> 11.0966
24HR 1280. 106.4818 74.0642 ‘-0;3750 16.1912
48HR 1028. 271.7776 171.0655 ~4,0984 20.4844
72HR 783. 429.4855 245.1899 -8.0006 20.4054

| SN
Latitude Band (30-35N degrees). -

FORECAST # OBS . MEAN STDEV - WS MEAN WS STDEV
I 6HR 1212. 15.0224 19.9092 0.1173 4.5306
[ 12HR 1176. 47.5794 37.4706 0.0962 7.4928

24HR 1108. 127.1264 81.7755 -0.1490 11.5852
l 48HR 825. 310.5803 173.2355 -2.0892 14.9582
lr_‘72HR 519. 496.1300 244.4717 -4.,7290 17.3825
Latitude Band (35-40N degrees)
FORECAST # OBS MEAN STDEV WS MEAN WS STDEV
. 6HR 946. 20.4041 25.1931 0.2675 4.4091
'g . 12HR 900. 58.8302 47.9440 0.5432 7.2945
24HR 704. 140.3747 94.5617 0.1103 11. 1681
48HR 336. 320.4381 177.8245 -2.8090 15.9747
72HR 139. 526.7996 270.5906 -7.6553 18.3389
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Latitude Band (40-45N degrees)

FORECAST # CBS MEAN STDEV WS MEAN WS STDEV
6HR 435. 28.8181 27.5730 0.2811 ' 5.3571
12HR 309. 68.3533 43.6306 0.3054 7.9838
24HR 173. 174.9660 86.8047 0.0670 11.5460
48HR 33. '495.5752 267.7177 2.6279 12.7545
72HR 8. 926.3521 245.4992 7.6454 12.4335
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Tabler E.2. Latitude Band Statistics for TRI BACK Model Test Data Set

Latitudz Band (10-~15N degrees)

S

FOPECAST #0BS MEAN STDEV WS MEAN WS STDEV
6HR 82. 5.9674 12.2625 0.0018 6.9753
12HR 80. 22.2019 21.6425 0.0473 12.9827
24HR 76, 54.4327  30.0039 = ~0.3189 22.3092
48HR v68. 118.5596 60.0564 0.5159 23.6850

L 72HR 64. 207.2246A=&£3;3977 3.8483 21.7294
Latitude Band {15-20N degrees)
w—

FORECAST # OBS MEAN STDEV - WS MEAN WS STDEV
6HR 142. 9.4401 15.4509 0.4973 4.9445
12HR 141. 29.4171 29.5486 1.3106 ©9.4029
24HR 141. 75.7104 55.3563 3.6633 17.9358
48HR 134. 190.4036 137.5752 6.4974 23.5444
72HR 118. 317.8708 -268.9904 8.2312 27.3040 .

Latitude Band (20-25N degrees) . —
FORECAST # OBS MEAN STDEV WS MEAN WS STDEV
. 6HR 118. 16.6161 19.0540 '1.3286 6.1561
12HR 112. 47.8628 37.2701 2.9517 12.1397
24HR 98. 129.7444 99.8359 3.7788 17.3478
48HR 67. 343.8527 285.1470 2.5967 18.1608
72HR 43. 536.0518 412.4499 -2.62?8 14.2447
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Latitude Band (25-30N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV
6HR ' 171. 17.5547 20.0380 0.3134 5.6981
12HR l64. 50.8185 39.5196 0.5613 10.1537
24HR 140. 136.3872 104.0475 0.1404 14.1743
48HR 95. 355.6502 239.7585 -2.2455 18.1464
72HR 61. 537.7274 292.3365 -3.2326 ~18.5527

-
#gtitude Band (30-35N degrees)

FORECAST # OBS MEAN STDEV WS MEAN -WS STDEV
6HR 159. 16.5927 23.3355 0.6983 5.1365
12HR 150. - 50.5033 47.6325 0.6613 6.8715
24HR 141. 137.2958 103.3371 1.2092 10.8538
48HR 109. 328.0773 168.2353 2.0904 12.5604
72HR 84. 557.3478 267.1497 2.7889 11.8182

Latitude Band (35-40N degrees)

FORECAST # CBS MEAN STDEV WS MEAN WS STDEV
6HR 60. 21.5317 25.9186 -0.0128 3.8465
12HR 58. 59.2690 40.6763 -0.2109 6.2751
24hKR 35. 135.0978 88.8907 -3.2292 9.7493
48HR 14. 283.3974 142.4806 -9,8549 5.8591
72HR 7. 429.2936 253.3595 -9.9094 11.5456
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Latitude Band (40-45N

degrees)

FOKECAST  # OBS MEAN STDEV WS MEAN WS STDEV
6HR 36.  30.8428 35.9494 -0.1945  3.2955
12HR 22.  70.0513 39.1518  0.3533  4.6025

24HR 13. 196.4097 78.2726  4.3727  5.9167
48HR 1. 454.3116 NaN 16.1591  NaN
72HR 0. NaN NaN NaN NaN
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Appendix F. Histograms

This Appendix contains frequency histograms of the great circle distance (GCD) forecast
errors of the test set. The forecast model used was the TRI BACK model.
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Figure F.1. Histogram of 6 Hour GCD Forecast Error for TRI BACK.
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- Figure F.2. Histogram of !2 Hour GCD Forecast Error for TRI BACK.
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Figure F.3. Histogram of 24 Hour GCD Forecast Error for TRI BACK.
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Figure F.4. Histogram of 48 Hour GCD Forecast Error for TRI BACK.

111

.
)

™~
AN

-




Frequency Histogram

of 72 Hour Forecast Errors

60

Frequency

GCD

2

(X 1000)

Figure F.5. Histogram of 72 Hour GCD Forecast Error for TRI BACK.
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| Appendix G. FINAL Comparison Summary Tables

Table G.1. Summary Statistics of Mean Squared Prediction Errors (MSPR)
WS MATRIX: WS BACK (351 storms used in parameter estimation)
DATA: ENTIRE DATA BASE (395 storms) |

6HR FORECAST

MODEL ¥ - DIST WS LAT LON
1.CURRY 7394. 879.82 33.50 0.11 0.21
2.TRI BACK 7394. 681.19 33.50 . 0.08 0.16
3.FINAL 7394. 678.05 33.50 - 0.08 0.16

12HR FORECAST

MODEL # : DIST WS LAT LON
1.CURRY 7038. 4408.62 95.57 0.54 1.00
2.TRI BACK 7037. 3247.12 95.34 0.40 0.72
3.FINAL 7037. 3238.82 95.34 0.40 0.71

24HR FORECAST

MODEL DIST WS LAT LON
1.CURRY 6344. 23367.53 238.73 2.71 . 5.57
2.TRI BACK 6326. 16781.12 238.18 2.03 - 3.80
3.FINAL 6324. 16754.41 238.30 2.03 3.79

48HR FORECAST

MODEL # DIST WS LAT LON
1.CURRY 5070. 110544.56 460.95 11.64 27.98
2.TRI BACK 4932. 85178.73 466.26 9.75 20.24
-3.FINAL 4935. 85641.90 466.33 9.84 20.38

72HR FORECAST

MODEL # DIST WS LAT LON
1.CURRY 4029. 244080.98 587.57 23.42 65.04
2.TRI BACK 3794. 198853.80 6C09.14 21.50 49.44
3.FINAL 3785. 199112.98 609.61 21.41 49.86
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Table G.2. Summary Statistics of Mean Errors (Standard Deviations)

WS MATRIX:
DATA:
6HR FORECAST
© MODEL f
1.CURRY 7394.
2.TRI BACK 7394.
3.FINAL 7394.
12HR FORECAST
MODEL
1.CURRY 7038.
2.TRI BACK 7037.
3.FINAL 7037.
24HR FORECAST
MODEL #
1.CURRY 6344.
2.TRI BACK 6326.
3.FINAL 6324,
48HR FORECAST
MODEL #
1.CURRY 5070.
2.TRI BACK 4932.
3.FINAL 4935,
72HR FORECAST
MODEL, #
1.CURRY 4029,
2.TRI BACK 3794.
3.FINAL 378S.

DIST
17.0(24.3)
14.0(22.1)

13.8(22.1)

DIST
48.7(45.2)
'41.4(39.2)
41.3(39.2)

DIST
119.8(94.9)
103.3(78.1)
103.3(77.9)

, DIST

268.9(195.5)
241.6(163.7)
242.7(163.5)

DIST
404.6(283.6)
375.5(240.6)
376.1(240.2)

Ws .
-0.2(5.8)
~0.2(5.8)
-002(508)

WS
-0.4(9.8)
-0.4(9.8)
-0.4(9.8)

WS
-0.2715.5)
~0.2(.5.4)
-0.2(15.4)

WS
1.3(21.4)
1.4(21.5)
1.4(21.6)

Wws
2.8(24.1)
3.2(24.5)
3.1(24.5)

LAT
0.1(0.3)
0.0(0.3)
0.0(0.3)

LAT
002(007)
0.0(0.6)
0.0(0.6)

LAT
0.5(1.6)
0.0(1.4)

-0.1(1.4)

LAT
1.2(3.2)
-0.3(3.1)
-0.3(3.1)

LAT
1.7(4.5)
=0.7(4.6)
-0.7(4.6)
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WS BACK (351 storms used in parameter estimation)
. ENTIRE DATA BASE (395 storms)

LON
-0.1(0.4)
0.0(0.4)
0.0(0.4)

LON
-003(100)
0.0(0.8)
0.0(0.8)

LON
-0.7(2.3)
0.0(1.9)
0.0(1.9)

LON
-1.7(5.0)
0.1(4.5)
0.1(4.5)

LON
-2.7(7.6)
0.5(7.0)
0.4(7.0)




Table G.3. Summary Statistics of Mean Squared Prediction Errors (MSPR)

WS MATRIX: WS FINAL (395 storms used in parameter estimation)
DATA: ENTIRE DATA BASE (395 stormg)

6HR FORECAST

MODEL #
1.CURRY 7394.
2.TRI BACK 7394.
3.FINAL 7394.
12HR FORECAST
. MODEL #
1.CURRY 7038.
2.TRI BACK 7037.
3.FINAL 7037.
24HR FORECAST

-~ MODEL #
1.CURRY 6344.
2.TRI BACK 6325.
3.FINAL 6324.
48HR FORECAST

MODEL #

1.CURRY 5070.

2.TRI BACK 4932.

3.FINAL 4935.

72HR FORECAST
MODEL F

1.CURRY 4029.

2.TRI BACK 3796.

3.FINAL 3785.

DIST
879.82
681.19
678.05

DIST

4408.62
3247.01
3238.83

DIST
23367.53

'16774.70

16752.35

DIST

- 110544.56

85170.31
85617.04

DIST
244080.98
198934.52
199085.08
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WS

33.51
33.51
33.51

WS
95.55
95.35
95.36

WS
239.11
238.56
238.61

WS
464.12
469.19

469.15

WS
591.41
611.48
612.16

LAT
0.11
0.08
0.08

LAT

0.54
0.40
0.40

| LAT

2.71
2.03
2.03

LAT
11.64
9.74

. 9.83

LAT
23.42
21.49
21.40

LON
0.21
0.16
0.16

LON

1.00
0.72
0.71

LON

5.57
3.80
3.79

LON

27.98
20.24
20.37

LON
65.04
49.50
49.85




Table G.4. Summary Statistics of Mean Errors (Standard Deviations)

WS MATRIX:

DATA: ENTIRE DATA BASE (395 storms)

6HR FORECAST

DIST

WS FINAL (395 storms used in parameter estimation)

MODEL # WS LAT LON
1.CURRY 7334, 17.0(24.3) =-0.2(5.8) 0.1(0.3) =0.1(0.4)
2.TRI BACK 7394. 14.0(22.1) =-0.2(5.8) 0.0(0.3) 0.0(0.4)

= 3.FINAL 7394. 13.8(22.1) =-0.2(5.8) 0.0(0.3) 0.0(0.4)
O 12HR FORECAST
Vb MODEL # DIST WS LAT LON
L 1.CURRY 7038, 48.7(45.2) =-0.3(9.8) 0.2(0.7) =0.3(1.0)
2.TRI BACK  7037. 41.4(39.2) =-0.3(9.8) 0.0(0.6) 0.0(0.8)
o 3.FINAL 7037. 41.3(39.2) -0.3(9.8) 0.0(0.6) 0.0(0.8)
K 24HR FORECAST |
L MODEL # DIST WS LAT LON
R 1.CURRY 6344. 119.8(94.9) =-0.1(15.5) 0.5(1.6) =0.7(2.3)
o 2.TRI BACK 6325. 103.3(78.1) =0.1(15.4) 0.0(1.4) 0.0(1.9)
o 3.FINAL 6324. 103.3(77.9) =-0.1(15.4) =-0.1(1.4) 0.0(1.9)
e 48HR FORECAST
| MODEL # ~ pIST WS LAT LON
. 1.CURRY 5070. 268.9(195.5) 1.6(21.5) 1.2(3.2) =1.7(5.0)
2.TRI BACK 4932. 241.6(163.7) 1.6(21.6) =0.3(3.1) 0.1(4.5)
3.FINAL 4935. 242.7(163.4) 1.6(21.6) =0.3(3.1) 0.1(4.5)
e 72HR FORECAST -
s MODEL # DIST Ws LAT LON
/"/t 1QCURRY 4029. 404.6(283.6) 3.1(2401) 107(4-5) -207(706)
2.TRI BACK 3796. 375.6(240.6) 3.5(24.5) =0.7(4.6) 0.5(7.0)
N 3.FINAL 3785. 376.1(240.1) 3.4(24.5) =0.7(4.6) 0.4(7.0)
,//“— 5
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Appendix H. FORTRAN for Forecasﬁng Model

Chhkkrkhhkhhhhkhhhkhkhhhkhhhkhhhhkdhhhkkhhhhhkhhhdkhhhhhhhhhhhhhkhhkhkhdkhkkii

FORECASTING HURRICANE TRACKS IN DATA BASE FORM
Captain Timothy Mott

Date Last Modified: 6 February 1993

Purpose: The purpose of this code is to forecast the
latitude, longitude and wind speeds of hurricane tracks up to
landfall. The forecasts are made up to 72 hours. The basic
structure of the program follows this outline

(1) Read in hurricane data matrix

(2) Set land fall boundary for data set

(3) Read in model coefficients for position forecastlng model

(4) Read in model coefficients for wind speed forecasting
model

(5) Make forecasting data matrix (lagged, present and
forecast value storage) ’

(6) Forecast 6 hour position report

(7) Repeat (6) 12 times to get 72 hour forecast

(8) Calculate error statistics

(9) Report error statistics

(10) Report forecasts (6, 12, 24, 48, and 72 hour)

Important variables

N: The number of position reports in the data base
STM: the number of storms

BASE(15000,10): The data base of hurricane tracks
BASE(*,1): Hurricane storm ID
BASE(*,2): Report date
BASE(*,3): Report time
BASE(*,4): Report latitude
BASE(*,5): Report longitude
BASE(*,6): Report maximum sustained wind speed

BOUND: The East Coast landfall boundary line

FORE(15000,60): Each row contains the one through

six lag values, present value, and 12 forecasted values (6
through 72 hours) of latitude longitude and wind speed.
-999 is used to mark as a missing value

COEF(20,20): This is the matrix of position forecast
model coefficients

NOOONONONONNONNACNNNANANANANAAANAONNNAAANANNONNDN
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COEF2(20,20): This is the matrix of wind speed forecast
. model coefficients

D6: The great circle distance (GCD)

TER(A,B): is the GCD forecast error of report A of the Bth
forecast : ‘ ‘

SUMERR(B,D): The sum of the position GCD forecast errors (D=1)
o The number of forecasts (D=2)

The mean (D=3) ‘

The variance (D=4)

The standard deviation (D=5)

The sum of the squared error (D=6)

LAERR*(B,D): same as SUMERR but for latitude band (*)

WSERR(B,D): same as SUMERR but for wind speed

LWERR*(B,D): same as WSERR but for latituJe band (*)

Chihkhhkhkhhkhkhhhhkhhhdehhhhhhhhhhhhhhhhkhhhhhhkhhhhhhhdhhhikhihikddddiiik

program FORECASTER

INTEGER N, STM, ID
INTEGER J, K, I, M,
NEWST, COUNT

REAL BASE(15000,10), FORE(15000,60)
REAL COEF(20,20), COEF2(20,20)
REAL LAERR1(7,7), LAERR2(7,7), LAERR3(7,7)

. REAL LAERR4(7,7), LAERR5(7,7)
REAL LWERR1(7,7), LWERR2(7,7), LWERR3(7,7)
REAL LWERR4(7,7), LWERRS(7,7), WSERR(S,6)
REAL SUMERR(5,6), TER(15000,5), WER(15000,5)

Y PIR, D1, D2, D3, D4, D6, D7

CHARACTER*20 NEWFL1, NEWFL2
CHARACTER*20 NEWFL3, NEWFL4, NEWFLS
CHARACTER*20 OLDFIL

INTRINSIC ACOS, SIN, COS

c****************************************************************

C GET THE HURRICANE TRACK DATA
CRERKIRRRIARRARKARREXRRRARRRIR A RSN cRRARRRh RN AR R ARk ARk hhhhhdd

WRITE (*,001)
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001 FORMAT(1X,’FILE NAME OF DATA FILE TO BE FORECASTED?')
READ(*, ‘(A20)’) OLDFIL
OPEN(UNIT=23,FILE=0LDFIL,STATUS='OtD',IOSTAT=IERROR,ERR=100)

WRITE(*,002)
002 FORMAT(1X,‘FILE IS OPEN.’)

DO 10 N = 1, 10000, 1

. READ(23, *, END=20) BASE(N,1), BASE(N,2), BASE(N,3),
+ BASE(N,4), BASE(N,5), BASE(N,6)

10 CONTINUE

20 WRITE(*,21)
21 FORMAT(1X, ‘END OF FILE’)

CLOSE(23)

95 WRITE(*,96) N
96 - FORMAT(1X,’THE NUMBER OF CASES IS :’, 18)

GO TO 120

100 WRITE(*,101) IERROR
101  FORMAT(’ *** CANNOT OPEN FILE ##% ’/ 18)

C *%kkk® STORM COUNT *kkxki
120 STM=1 |
DO 380 K = 1,N,1
BASE(K,7)=ST™M
J=K+1 ,
IF((BASE(K,I).GT.O).AND.(BASE(K,l).NE.BASE(J,I)))STM=STM+1
380 CONTINUE

WRITE(*,399) STM

- 399 FORMAT( ., ’THE NUMBER OF STORMS IS :’, I18)

WRITE(*,>98) N
398 FORMAT('X./THE N IS :/, I8)

C ##%%%** THIS ASSUMES THAT THE DATA IS IN THE NO DECIMAL PLACE
C #**k%* FORMAT
DO 1190 K =1, N, 1
BASE(K,4)=BASE(K,4)/10.0
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BASE(K, 5)=BASE(K,5)/10.0
1190 CONTINUE

C****************************************************************

Cc SET THE LANDFALL BOUNDARY
c****************************************************************
DO 1200 K=1, N, 1
BOUND = (-14 0/15.0)*BASE(K,5)-BASE(K,4)+110.33
IF ((BASE(K,5).LE.70.0).AND.(BASE(K,4).LE.45.0))THEN
BASE(K,7) = 0.0

ELSE
IF ((BASE(K,5).LE.80.0).AND.(BASE(K,5).GT.70.0). AND.
+ (BOUND.GE.0.0) )THEN
BASE(K,7) = 0.0
ELSE

IF((BASE(K,5).LE.100. 0) AND. (BASE(K,4).LE. 31)) THEN
BASE(K,7) = 0.0

ELSE
BASE(K, 7) = 1.0

ENDIF :

ENDIF

ENDIF

1200 CONTINUE

DO 1210 K= 1, N, 1
L = K+1
IF(BASE(Z,1).EQ.BASE(K,1))THEN

IF(BASE(K,7).EQ.1.0)THEN
BASE(L,4) = =999
BASE(L,5) = =999

ELSE
BASE(L,4)=BASE(L,4)
BASE(L,5)=BASE(L,5)
ENDIF
ELSE
BASE(L,4)=BASE(L,4)
BASE(L,5)=BASE(L,5)
ENDIF
1210 CONTINUE

Chhhkkhkhhkhhhhhhhkhkhdhhhhhhhhhhhhhhhhhhhhhhdhhhhhihdiddiihidhidkiikh

C GET THE MATRIX THAT HAS THE POSITION FORECASTING COEFFICIENTS

Chhhkhhkkhhhkhhhhkhkhhhkhhhhhhhhhrdhhhdohhhhkhhdhhhhhhhhrtdhhhdhhhhdhhrhdhi
WRITE (*,501)

501  FORMAT(1X,’FILE NAME OF MATRX WITH THE FORECASTING
+COEFFICIENTS?’)
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502

510

520
521

500
507

READ(*, ’(A20)’) OLDFIL A
OPEN(UNIT=24,FILE=OLDFIL,STATUS='OLD',IOSTAT=IERROR,ERR=500)

WRITE(*,502)
FORMAT(1X,’FILE IS OPEN.’)

DO 510 M = 1, 16, 1
READ(24, *, END=520) COEF(M,1), COEF(M,2), COEF(M,3),
+ COEF(M,4), COEF(M,5), COEF(M,6), COEF(M,7), COEF(M,8),
+ COEF(M,9), COEF(M,10), COEF(M, 11), COEF(M,12), COEF(M,13},
+ COEF(M,14)
.CONTINUE

WRITE(*,521)
FORMAT(1X,’END OF FILE’)

CLOSE(24)
GO TO 900

WRITE(*,507)IERROR
FORMAT(’*** CANNOT OPEN FILE *#%*’ I8)

QCdedede o de e % Jede e de e de ke v de de Jo ke ke de e de e de ode de g de T e de de e e e de e e g Ko de e de o g e de K ke e e e de e ke e ke ke de ek ke ok

C GET THE MATRIX THAT HAS THE WIND SPEED FORECASTING COEFFICIENTS
Chhhhkhkhhhhkhhhhhhhhhhhhrhhhhhrhhhhhhrhhhkkhhhhrhhhhhhhhhkhhhhhthhdk

900
9201

902

910

920
921

WRITE (*,901)
FORMAT(1X,’/FILE NAME OF MATRX WITH THE WS COEFFICIENTS?’)

READ(*, ‘(220)’) OLDFIL
OPEN(UNIT=44,FILE=OLDFIL,STATUS='OLD’, {OSTAT=IERROR, ERR=999)

WRITE(*,902) ‘
FORMAT(1X, FILE IS OPEN.')

DO 910 M = 1, 16, 1

READ(44, *, END=520) COEF2(M,1), COEF2(M,2), COEF2(M,3),
+ COEF2(M,4), COEF2(M,5), COEF2(M,6), COEF2(M,7)

CONTINUE

WRITE(*,921)
FORMAT(1X,’END OF FILE‘)

CLOSE(44)
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GO TO 922

999  WRITE(*,907)IERROR |
907 FORMAT(‘#%% CANNOT OPEN WS FILE ###/,18)

(i 2222 232222222222 2222222 X2 2 222222222222 2212212223 2222223 232223 22

C BUILD THE FORECAST MATRIX
ct**t******************t****************t*********i*****t********
922 DO 400 I=1, N, 1
' DO 410 J=1, 60, 1

FORE(I,J)=-999
410 CONTINUE
400 CONTINUE

C *##%% PUT PRESENT VALUES INTO FORECAST MATRIX
' DO 430 I=1,N,1
FORE(I,20)=BASE(I,1)
FOF'3(I,7)=BASE(I,4)
FORE(I,27)=BASE(I,5)
FORE(I,47)=BASE(I,6)
430 CONTINUE
C 2%k TAG 1
ID = FORE(1,20)
DO 440 I=2,N,1 4
IF(FORE(X,20).EQ.ID)THEN
FORE(I,6)=BASE(I-1,4)
FORE(I,26)=BASE(I-1,5)
FORE(I,46)=BASE(I-1,6)
ELSE
ID = FORE(I,20)
ENDIF
440 CONTINUE

C %%tk LAG 2

-ID = FORE(2,20)
COUNT = 0
DO 450 I=1,N,1
IF(FORE(I,20).EQ.ID)THEN
IF (COUNT.LT.2)THEN
COUNT = COUNT+1
ELSE
FORE(I,5)=BASE(I-2,4)
FORE(I,25)=BASE(I~-2,5)
FORE(I,45)=BASE(I-2,6)

ENDIF
ELSE
ID = FORE(I,20)
COUNT=1
ENDIF

450 CONTINUE
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C *kxk*x IAG 3
ID = FORE(3,20)
COUNT=0
DO 460 I=1,N,1
IF(FORE(I,20).EQ.ID)THEN
IF (COUNT.LT.3)THEN
COUNT = COUNT+1
ELSE
FORE(I,4)=BASE(I~3,4)
FORE(I,24)=BASE(I-3,5)
FORE(I,44)=BASE(I-3,6)

ENDIF
ELSE
ID = FORE(I,20)
COUNT=1
ENDIF

460 CONTINUE

C *x%dkx JAG 4.
ID = FORE(4,20)
COUNT = 0
DO 470 I=1,N,1
IF(FORE(I,20).EQ.ID)THEN
IF (COUNT.LT.4)THEN
COUNT = COUNT+1
ELSE
FORE(I,3)=BASE(I-4,4)
FORE(I,23)=BASE(I-4,5)
FORE(I,43)=BASE(I-4,6)

ENDIF
ELSE
ID = FORE(I,20)
COUNT=1
ENDIF

470 CONTINUE
C ®*%%d% LLAG 5
ID = FORE(5,20)
COUNT=0
DO 480 I=1,N,1
IF(FORE(I,20).EQ.ID)THEN
IF (COUNT.LT.5)THEN
COUNT = COUNT+1
ELSE
FORE(I,2)=BASE(I-5,4)
FORE(I,22)=BASE(I-5,5)
FORE(I,42)=BASE(I-5,6)

ENDIF
ELSE
ID = FORE(I,20)
COUNT=1
ENDIF
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480 CONTINUE
C *%*k%k* LAG 6
ID = FORE(6,20)
COUNT=0 .
DO 490 I=7,N,1
IF(FORE(I,20).EQ.ID)THEN
IF (COUNT.LT.6)THEN
COUNT = COUNT+1
ELSE .
© FORE(I,1)=BASE(I-6,4)
FORE(I,21)=BASE(I-6,5)
FORE(I,41)=BASE(I-6,6)

ENDIF
ELSE
ID = FORE(I,20)
ENDIF

490 CONTINUE

C****************************************************************

C FORECAST USING THE POSITION AND WS COEFFICIENTS

C THIS IS REPEATED FOR 12 FORECASTS (A THROUGH 72 HOURS)
oI T L L I T e I I T L L L L TR I I L I I T I I R T Y Ty Yy

"ID = 0
NEWST = 0

DO 550 I=1,N,1
C ##x%%* SKIP FIRST SIX OBS OF A STORM -- TO HAVE ENOUGH INFO

C %*#%%%% TO FORECAST

IF(FORE(I,20).EQ.IN)THEN
NEWST=NEWST+1
ELSE :
ID = FORE(I,20)
NEWST=1
ENDIF -

C *#*%% DO NOT FORECAST IF OUT OF RANGE
IF(NEWST.LT.7)GO TO 550

C **%** DO FORECASTS 6 THROUGH 72 HOURS
DO 560 J=1,12,1
C ##%%** SKIP FORECAST IF THE TIME AHEAD IS NOT IN DATA
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C #**%*** THIS IS DONE BECAUSE OTHERWISE THERE WOULD BE NO
C **%%x% WAY TO CHECK ACCURACY OF FORECAST

IF(FORE(I+J,20).NE.FORE(I,20))GO TO 560

C #**%%* SKIP FORECAST IF INFO USED IS NONEXSISTENT
‘ FLAG=0 .
DO 561 K=1,7,1
IF( (FORE(I,7+J-K).LT.0).OR.(FORE(I,27+J-K).LT.0) )FLAG=1
561 CONTINUE <
: IF(FLAG.EQ.1)GO TO 560

C #*%*% GET PROPER LATITUDE BAND FOR FORECAST MODEL
K=0 :
IF(FORE(I,6+J).LT.15.0)K=1 |
IF((FORE(I,6+J).LT.20.0).AND. (FORE(I,6+J).GE.15.0))K=2
IF((FORE(I,6+J).LT.25.0).AND. (FORE(I,6+J).GE.20.0))K=3
IF((FORE(I,6+J).LT.30.0) .AND. (FORE(I,6+J).GE.25.0) )K=4
IF((FORE(I,6+J).LT.35.0).AND.(FORE(T,6+J).GE.30.0))K=5
IF((FORE(I,6+J).LT.40.0).AND.(FORE(I,6+J).GE.35.0))K=6
IF((FORE(I,6+J).LE.45.0).AND. (FORE(I,6+J).GE.40.0))K=7
IF(K.EQ.O)THEN
FORE(I,7+3)=-999
FORE(I,27+J)==999
GO TO 560
ENDIF

C *%%%* FORECAST °‘LATITUDE USING ' INPUTTED FORECAST MODEL

COEFFICIENTS

FORE(I,7+J)=FORE(I,6+J)
++COEF(1,K)*(FORE(I,6+J)=FORE(I,5+J))
++COEF(2,K)*(FORE(I,5+J)~-FORE(I,4+J))
+4+COEF(3,K)*(FORE(I,4+J)=FORE(I,3+J))
++COEF(4,K)*(FORE(I,3+J)~-FORE(I,2+J))
++COEF(5,K)*(FORE(I,2+J)=FORE(I,1+J))
++COEF(6,K)*(FORE(I,26+J)~FORE(I,25+J))
++COEF(7,K)*(FORE(I,25+J)~FORE(I,24+J))
++COEF(8,K)*(FORE(I,24+J)~FORE(I,23+J))
++COEF(9,K)*(FORE(I,23+J)-FORE(I,22+J))
++COEF(10,K)*(FORE(I,22+J)~FORE(I,21+J))
++COEF(11,K)*(FORE(I,46+J))
++COEF(12,K)*(FORE(I,45+J))
++COEF(13,K)*(FORE(I,44+J))
++COEF (14 ,K)*(FORE(I,43+J))
++COEF (15,K)* (FORE(I,42+J))
++COEF(16,K)
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C  kkkkk FORECAST LONGITUDE USING INPUTTED FORECAST MODEL
COEFFICIENTS o o

FORE(I 27+J)=FORE(I,26+J)
++COEF(1 K+7)*(FORE(I,6+J)-FORE(I, 5+J))
++COEF(2,K+7)*(FORE(I,5+J)~FORE(I, 4+J))

- ++COEF(3,K+7)*(FORE(I,4+J)~FORE(I,3+J))
++COEF(4,K+7)*(FORE(I,3+J)-FORE(I,2+J))
++COEF(5,K+7)*(FORE(I,2+J)-FORE(I,1+J))
++COEF(6,K+7)*(FORE(I,26+J)-FORE(I,25+J))
++COEF(7,K+7)*(FORE(I,25+J)~FORE(I,24+J))
++COEF(8,K+7)*(FORE(I,24+J3)-FORE(I,23+J))
++COEF(9,K+7)*(FORE(I,23+J)-FORE(I,22+J))

* +4+COEF(10,K+7)*(FORE(I,22+J)~FORE(I,21+J))
++COEF(11,K+7)*(FORE(1,46+J))
++COEF (12,K+7)*(FORE(I,45+J))
++COEF(13,K+7)*(FORE(I,44+J))
++COEF(14,K+7)*(FORE(I,43+J))

- ++COEF(15,K+7)*(FORE(I, 42+J))
++COEF(16 K+7)

C  hhkkk FORECAST WIND SPEED USING INPUTTED FORECAST MODEL

, COEFFICIENTS
-  FORE(I,47+J)=COEF2(1,K)*(FORE(I,6+J)~-FORE(I,5+J))

P ++COEF2(2,K)*(FORE(I,5+J)~FORE(I,4+J))

: ++COEF2(3,K)*(FORE(I,4+J)~FORE(I,3+J))
++COEF2(4,K)*(FORE(I,3+J)~FORE(I,2+J))

' ++COEF2(5,K)* (FORE(I,2+J)~FORE(I,1+J))
++COEF2(6,K)*(FORE(I, 26+J)~FORE(I,25+J))
++COEF2(7,K)*(FORE(I,25+J)~FORE(I,24+J))
++COEF2(8,K)*(FORE(I,24+J)-FORE(I,23+J))

- ++COEF2(9,K)*(FORE(I,23+J)~-FORE(I,22+J))
++COEF2(10,K)*(FORE(I,22+J)=FORE(I,21+J))
++COEF2(11,K)*(FORE(I,46+J))
++COEF2(12,K)*(FORE(I,45+J))
++COEF2(13,K)*(FORE(I,44+J))

~——Qf- . ++COEF2(14,K)*(FORE(I,43+J)) | ~ e

++COEF2(15,K) *(FORE(I,42+J))
++COEF2(16,K)

560 CONTINUE

550 CONTINUE

- ’ Chihkkkhhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhhkhhhhhhhkhhrrrhhhhhhhhhhhih

e B C GETTING STATISTICS ON THE FORECAST ERRORS
- I T T E T I T L L T 2 T LT R T R T LT T PR T T Y T
ID =0
DO 600 I=1,N,1
C #*#%%* SET FIRST SIX TO -999
IF(FORE(I,20).EQ.ID)THEN
NEWST=NEWST+1
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ELSE
ID = FORE(I, 20)
NEWST=1

ENDIF

IF (NEWST.LT.?7)THEN
TER(I,1)=-999
TER(I,2)=~999
TER(I,3)=-999
TER(I,4)=-999
TER(I,5)=-999
GO TO 600

ENDIF

C #***x%* DO NOT GET FORECAST ERROR IF OUT OF RANGE

IF(FORE(I,7).GT.45.0)THEN
TER(I,1)=-999
TER(I,2)=-999
TER(I,3)=-999
TER(I,4)=-999
TER(I,5)=-999
GO TO 600
ENDIFC #**** CHOOSE PROPER FORECAST MODEL
K=0
IF(FORE(I,7).LT.15.0)K=1
IF((FORE(I,7).LT.20.0).AND.(FORE(I,7).GE.15.0))K=2
IF((FORE(I,7).LT.25.0).AND.(FORE(I,7).GE.20.0))K=3
IF((FORE(I,?7).LT.30.0).AND.(FORE(I,7).GE.25.0))K=4
IF( (FORE(I,7).LT.35.0).AND.(FORE(I,?7).GE.30.0))K=5
IF((FORE(I,7).LT.40.0).AND. (FORE(I,7).GE.35.0))K=6
IF((FORE(I,7).LE.45.0).AND.(FORE(I,7).GE.40.0))K=7
IF(K.EQ.O)THEN
" TER(I,1)=-999
TER(I,2)=-999
TER(I,3)=-999
TER(I,4)=-999
TER(I,5)=-999
GO TO 600
ENDIF

PIR = 180.0/(ACOS(-1.00))
C #*** 6 HOUR FORECAST ERROR
IF((FORE(I,20).EQ.FORE(I+1,20)).AND.(FORE(I,8).GE.0.0)

+.AND. (FORE(I+1,7).GE.0.0).AND.(FORE(I,28).GT.0.0).AND.
+(FORE(I+1,27).GT.0.0))THEN _
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C **%%* GREAT CIRCLE DISTANCE BETWEEN ACTUALvAND FORECASTED

D1=STW(FORE(I,8)/PIR)
D3=SIN(FORE(I+1,7)/PIR)
D2=COS(FORE(I,8)/PIR)
D4=COS(FORE(I+1,7)/PIR)

D6=COS( (FORE(I+1,27)~FORE(I,28))/PIR)

IF((D1*D3+D2*D4*D6).GE.0.99999)THEN
D7=0.0 o
ELSE
D7—ACOS(D1*D3+D2*D4*D6)
ENDIF
TER(I 1) = (D7*PIR)*60.0

SUMERR(l 1)=SUMERR(1, 1)+TER(I 1)
SUMERR(1,2)=SUMERR(1,2)+1
SUMERR(l,6)éTER(I,l)*TER(I,1)+SUMERR(1,6)

LAERR1 (K, 1)=LAERR1(K,1)+TER(I,1)
LAERR1 (K, 2)=LAERR1(K,2)+1
LAERR1 (K, 7)=TER(I,1)*TER(I,1)+LAERR1(K,7)

WER(I,1) = (FORE(I,48)-FORE(I+1,47))
WSERR(1,1)=WSERR(1,1)+WER(I,1)
WSERR(1,2)=WSERR(1,2)+1
WSERR(1,6)=WER(I,1)*WER(I,1)+WSERR(1,6)

LWERR1 (K, 1)=LWERR1(K,1)+WER(I,1)
LWERR1 (K, 2)=LWERR1 (K, 2)+1
LWERR1(K,7)=WER(I, 1)*WER(I 1)+LWERR1(K,7)

ELSE
TER(I,1)=-999
WER(I,1)=-999

ENDIF

C #%** 12 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+2,20)).AND.(FORE(I,9).GE.0.0)
+.AND. (FORE(I+2,7).GE.0.0).AND.(FORE(I,29).GT.0.0).AND.
+(FORE(I+2,27).GT.0.0))THEN

C **%%* GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED

D1=(SIN(FORE(I,9)/PIR))
D3=(SIN(FORE(I+2,7)/PIR))
D2=(COS(FORE(I,9)/PIR))
D4=(COS(FORE(I+2,7)/PIR))

D6=(COS( (FORE(I+2, 27)-FORE(I 29))/PIR))
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IF((Dl*D3+DZ*D4*D6) GE 0. 99999)THEN
D7=0.0

ELSE
D7“ACOS(Dl*D3+DZ*D4*DG)

ENDIF

TER(I,2) = (D7*PIR)*60.0

SUMERR(2,1)=SUMERR(2,1)+TER(I,2)
SUMERR( 2, 2)=SUMERR( 2, 2)+1
SUMERR(2,6)=TER(I,2)*TER(I,2)+SUMERR(2,6)

LAERR2(K,1)=LAERR2(K,1)+TER(I,2)
LAERR2(K, 2)=LAERR2 (K, 2)+1
LAERR2(K,7)=TER(I,2)*TER(I,2)+LAERR2(K,7)

WER(I,2) = (FORE(I,49)-FORE(I+2,47))
WSERR(2,1)=WSERR(2,1)+WER(I,2)
WSERR(2,2)=WSERR(2,2)+1
WSERR(2,6)=WER(I,2)*WER(I, 2)+WSERR(2 6)

LWERR2(K,1)=LWERR2(K,1)+WER(I,2)
LWERR2(K, 2)=LWERR2(K, 2)+1
LWERR2(K,7)=WER(I,2)*WER(I,2)+LWERR2(K,7)

ELSE '
TER(I,2)=-999
WER(I,2)=-999

ENDIF

C *xx% 24 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+4,20)).AND. (FORE(I 11).5E.0.0)
+.AND. (FORE(I+4,7).GE.0.0).AND.(FORE(I,31).GT.0.0).AND.
+(FORE(I+4,27).GT.0.0))THEN

C *hkkk GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED

D1=(SIN(FORE(I,11)/PIR))
D3=(SIN(FORE(I+4,7)/PIR))
D2=(COS(FORE(I,11)/PIR)) o
D4=(COS(FORE(I+4,7)/PIR))

D6=(COS( (FORE(I+4,27)~-FORE(I,31))/PIR))

IF((D1*D3+D2*D4*D6) .GE.0.99999)THEN

D7=0.0
ELSE
D7=ACOS(D1*D3+D2*D4*D6)
ENDIF
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TER(I,3) = (D7*PIR)*60.0

Cc

C

SUMERR(3,1)=SUMERR(3,1)+TER(I,3)
SUMERR(3,2)=SUMERR(3,2)+1
- SUMERR(3,6)=TER(I,3)*TER(I,3)+SUMERR(3,6)

LAERR3 (K, 1)=LAERR3 (K, 1)+TER(I,3)
LAERR3 (K, 2)=LAERR3(K, 2)+1
LAERR3(K,7)=TER(I,3)*TER(I,3)+LAERR3(K,7)

"WER(I,3) = (FORE(I,51)-FORE(I+4,47))
WSERR(3,1)=WSERR(3,1)+WER(I,3)
WSERR(3,2)=WSERR(3,2)+1
WSERR(3,6)=WER(I,3)*WER(I,3)+WSERR(3,6)

LWERR3(K,1)=LWERR3(K,1)+WER(I,3)
LWERR3 (K, 2)=LWERR3(K, 2)+1
LWERR3 (K, 7)=WER(I,3)*WER(I,3)+LWERR3(K,7)

ELSE
TER(I,3)=-999
WER(I,3)=-999

ENDIF

**%* 48 HOUR FORECAST ERROR

IF((FORE(I,ZO).EQ.FORE(I+8,20)).AND.(FORE(I,IS);GE.0.0)
+.AND. (FORE(I+8,7).GE.0.0).AND.(FORE(I,25).GT.0.0).AND.

+(FORE(I+8,27).GT.0.0))THEN

**%x* GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED

D1=(SIN(FORE(I,15)/PIR))
D3=(SIN(FORE(I+8,7)/PIR))
D2=(COS(FORE(I,15)/PIR))
D4=(COS(FORE(I+8,7)/PIR)) _
D6=(COS ( (FORE(I+8,27)~FORE(I,35))/PIR))

IF((D1*D3+D2*D4*D6) .GE.0.99999)THEN
D7=0.0
ELSE
D7=ACOS(D1*D3+D2*D4*D6)
ENDIF

TER(I,4) = (D7*PIR)*60.0
SUMERR( 4,1)=SUMERR(4,1)+TER(I,4)

SUMERR(4,2)=SUMERR(4,2)+1
SUMERR(4,6)=TER(I,4)*TER(I,4)+SUMERR(4,6)
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- LAERR4 (K,1)=LAERR4 (K,1)+TER(I,4)
, LAERR4 (K, 2)=LAERR4 (K, 2)+1
LAERR4 (K,7)=TER(I,4)*TER(I,4)+LAERR4(K,7)

WER(I,4) = (FORE(I,55)-FORE(I+8,47))
WSERR(4,1)=WSERR(4,1)+WER(I,4)
WSERR(4,2)=WSERR(4,2)+1
WSERR(4,6)=WER(I,4)*WER(I,4)+WSERR(4,6)

LWERR4 (K, 1}=LWERR4 (K, 1)+WER(I,4)
: , | . LWERR4(K,2)=LWERR4(K,2)+1
| - LWERR4 (K, 7)=WER(I,4)*WER(I, 4)+LWERR4(K 7)

ELSE

TER(I,4)=-999

WER(I,4)=-999
ENDIF

C #**%%* 72 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+12,20)).AND. (FORE(I 1:).GE.0.0)
+.AND. (FORE(I+12,7).GE.0.0).AND. (FORE(I 39).GT.0.0).AND.
+(FORE(I+12,27).GT.0.0))THEN

,,,,,, C **%** GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED
D1=(SIN(FORE(I,19)/PIR))
D3=(SIN(FORE(I+12,7)/PIR))
D2=(COS(FORE(I,19)/PIR))
D4=(COS(FORE(I+12,7)/PIR))

D6=(COS( (FORE(I+12,27)~-FORE(I,39))/PIR))

. IF((D1*D3+D2*D4*D6) .GE.0.99999 )THEN
e D7=0.0

. ELSE

D7-ACOS(Dl*D3+D2*D4*D6)

ENDIF

TER(I,5) = (D7*PIR)*60.0

. SUMERR(5,1)=SUMERR(5,1)+TER(I,5)
VAR SUMERR(5,2)=SUMERR(5,2)+1
o SUMERR(5,6)=TER(I,5)*TER(I,5)+SUMERR(S5,6)

LAERRS (K, 1)=LAERR5 (K, 1)+TER(I,5)

LAERRS5 (K, 2)=LAERRS(K,2)+1
LAERR5(K,7)=TER(I,5)*TER(I,5)+LAERR5(K,7)
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600

698

WER(I,5) = (FORE(I,59)-FORE(I+12,47))
WSERR(5,1)=WSERR(5,1)+WER(I,5)
WSERR(5,2)=WSERR(5,2)+1
WSERR(5,6)=WER(I,5)*WER(I,5)+WSERR(5,6)

LWERRS (K, 1)=LWERR5(K,1)+WER(I,5)
LWERRS (K, 2 ) =LWERRS (K, 2 ) +1
LWERR5 (K, 7)=WER(I,5)*WER(I,5)+LWERR5(K,7)

ELSE o
TER(I,5)=~999
WER(I,5)=-999

ENDIF

CONTINUE
DO 698 J=1,5,1
SUMERR(J,3)= SUMERR(J,1)/SUMERR(J,2)
' SUMERR(J,4)=( (SUMERR(J,6)-( (SUMERR(J, 3)**2)
+*SUMERR(J,2))))/( (SUMERR(J,2)~1))
SUMERR(J, 5)=SUMERR(J,4)**0.5
WSERR(J,3)= WSERR(J,I)/WSERR(J,Z)
' WSERR(J 4)=( (WSERR(J,6)- ( (WSERR(J,3)##2)
+*WSERR(J,2))) )/ ( (WSERR(J, 2)-1)) '
WSERR(J,5)=WSERR(J,4)**0.5
CONTINUE |
DO 810 J=1,7,1
LAERR1(J,3)=LAERR1(J,1)/LAERR1(J,2)
LAERR2(J,3)=LAERR2(J,1)/LAERR2(J, 2}
LAERR3(J,3)=LAERR3(J,1)/LAERR3(J,2)

LAERR4 (J,3)=LAERR4(J,1)/LAERR4(J,2)
LAERRS(J, 3 )=LAERR5(J,1) /LAERR5(J, 2)

LAERR1(J,5)=(LAERR1(J,7)- (LAERRl(J 2)*(LAERR1(J 3)%*2}))/

+(LAERR1(J,2)~1)

LAERR2(J,5)=(LAERR2(J,7)-(LAERR2(J, 2)*(LAERR2(J 3)*%2)))/

+(LAERR2(J 2)-1)

LAERR3(J,5)=(LAERR3(J,7)~(LAERR3(J,2)*(LAERR3(J,3)**2)))/ |

+(LAERR3(J,2)~-1

LAERR4(J,5)=(LAERR4(J,7)-(LAERR4(J,2)*(LAERR4(J,3)**2)))/

+(LAERR4(J 2)-1)

LAERR5(J,5)=(LAERR5(J,7)~(LAERR5(J, 2)*(LAERR5(J 3)*%2)))/

+(LAERR5(J,2)-1)
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LAERR1 (J,6)=LAERR1(J,5)**0.5
LAERR2(J,6)=LAERR2(J,5)**0.5
LAERR3(J,6)=LAERR3(J,5)**0.5
LAERR4 (J,6)=LAERR4(J,5)**0.5
LAERRS(J,6)=LAERR5(J,5)**0.5

LWERR1(J,3)=LWERR1(J,1)/LWERR1(J, 2)
LWERR2(J,3)=LWERR2(J,1)/LWERR2(J,2)
LWERR3(J,3)=LWERR3(J,1)/LWERR3(J,2)
LWERR4 (J,3)=LWERR4(J,1)/LWERR4(J,2)
LWERR5(J, 3)=LWERR5(J,1)/LWERRS(J, 2)

LWERR1(J,5)=(LWERR1(J,7)-(LWERR1(J, 2)*(LWERR1(J, 3)**2)))/‘
+(LWERR1(J,2)-1)

LWERR2(J,5)=(LWERR2(J,7)-(LWERR2(J, 2)*(LWERR2(J 3)%%2)))/
+(LWERR2(J,2)-1)

LWERR3(J,5)=(LWERR3(J,7)~(LWERR3(J, 2)*(LWERR3(J 3)*%2)))/
+(LWERR3(J,2)-1)

LWERR4 (J,5)=(LWERR4 (J,7)~(LWERR4 (J,2)*(LWERR4 (J,3)**2)))/
+(LWERR4 (J,2)-1)

LWERR5(J,5)=(LWERRS (J,7)=(LWERRS (J,2)*(LWERRS (J,3)**2)))/
+(LWERR5(J,2)-1)

LWERR1(J,6)=LWERR1(J,5)**0.5
LWERR2(J, 6 )=LWERR2(J,5)**0.5
LWERR3(J,6)=LWERR3(J,5)**0.5
LWERR4 (J, 6 )=LWERR4 (J,5)**0.5
LWERRS (J, 6 )=LWERRS5(J,5)**0.5

810 CONTINUE

Coe % de e de e de e Je de e e de It e e do e e de de do e e de Je ode de e e e de e e de Fe e e de de e de o e de de e K de R A de de e e de g e de de e ke ke e

C REPORTING STATISTICS ON THE FORECAST ERRCRS
c***********w******************************************************

WRITE(*,700)
700 FORMAT( ’NAME OF FILE FOR OBS. FORECAST ERRORS?’)
READ(*,’(A)’ )NEWFL1
OPEN( 30, FILE=NEWFL1, STATUS=’NEW')

WRITE(*,710)
710 FORMAT( ‘NAME OF FILE FOR ERROR SUMMARY STATISTICS?’)
READ(*,’(A)’ )NEWFL2
OPEN( 31 ,FILE=NEWFL2, STATUS=’NEW’ )

WRITE(*,711)
711 FORMAT( ’NAME OF FILE FOR STORING LAT FORECASTS?’)
. READ(*, " (A)’ )NEWFL3
OPEN(32,FILE=NEWFL3,STATUS='NEW’)
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WRITE(*,712)

712 FORMAT ( ’ NAME OF'FILE FOR STORING LON FORECASTS”)

READ(*,’ (A)’)NEWFL4
OPEN(33,FILE=NEWFL4 STATUS—'NEW')

A WRITE(*,713)
713 FORMAT(’NAME OF FILE FOR STORING WS FORECASTS")
"READ(*,’(A)*)NEWFLS
OPEN(34 , FILE=NEWFLS , STATUS='NEW’ )

'WRITE(31,730)
WRITE(31,731)

- WRITE(31,732)
WRITE(31,731)

WRITE(31,720) SUMERR(1,2), SUMERR(1, 3), SUMERR(l 5),
+WSERR(1,3), WSERR(1,5)

WRITE(31,731)
WRITE(31,725) SUMERR(2,2), SUMERR(2,3), SUMERR(Z 5),

+WSERR(2,3), WSERR(2,5)
WRITE(31,731)

WRITE(31,726) SUMERR(3,2), SUMERR(3,3), SUMERR(3,5),

+WSERR(3,3), WSERR(3,5)
WRITE(31,731)

WRITE(31,727) SUMERR(4,2), SUMERR(4,3), SUMERR(4,5),
+WSERR(4,3), WSERR(4,5)
WRITE(31,731)

WRITE(31,728) SUMERR(S, 2), SUMERR(5,3), SUMERR(S, 5),
+WSERR(5,3), WSERR(5,5)
WRITE(31,731)

DO 719 K=1,7,1

WRITE(31,731)
RITE(31,729)K
ITE(31,731)
ITE(31,732)

WRITE(31,731)

WRITE(31,720) LAERR1(K,2), LAERR1(K,3), LAERR1(K,6),
+LWERR1(K,3), LWERR1(K,6)

WRITE(31,731)
WRITE(31,725%) LAERR2(K,2), LAERRZ(K 3), LAERR2(K,6),
+LWERR2(K 3), LWERR2(K,6)
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719

720
725

726
727
728
729
730
731
732

WRITE(31,731)

WRITE(31,726) LAERR3(K,2), LAERR3(K,3), LAERR3(K,6),

+LWERR3(K,3), LWERR3(K,6)

WRITE(31,731)
WRITE(31,727) LAERR4(K,2), LAERR4(K,3), LAERR4(K,6),

+LWERR4 (K, 3), LWERR4(K,6)

WRITE(31, 731)
WRITE(31,728) LAERRS(K 2), LAERR5(K 3), LAERRS(K 6),

+LWERR5(K,3), LWERR5(K,6)

WRITE(31,731)
WRITE(31,731)

CONTINUE
FORMAT(3X, ’6HR’ ,6X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
FORMAT( 3X, /12HR’ ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
FORMAT(3X, ’24HR’ ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
FORMAT(3X, ’48HR’ ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
FORMAT(3X,’72HR’ ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
FORMAT ( / #*#***FORECAST ERRORRS FOR LAT BAND=',I4)
FORMAT( ’ *****OVERALL FORECAST ERROR SUMMARY'’)

FORMAT(’ *) |

FORMAT(  FORECAST’ ,6X,’# OBS’,7X,’MEAN’,7X,’STDEV’,

+6X, WS MEAN’,6X,"WS STDEV/)

. C********"t*************}*******************************************

C REPORTING THE FORECASTS FOR LATITUDE, LONGITUDE, WIND SPEED

C AND THE GCD FORECAST :ERROR FOR EACH PEPORT
c**********************#*******************************************

741
740

DO 740 J=1,N,1

WRITE(32,741)FORE(J,20),FORE(J, 7),FORE(J,8),

+FORE(J 9),FORE(J,11) ,FORE(J, 15) FORE(J, 19)

WRITE(33,741)FORE(J,20) ,FORE(J, 27),FORE(J,28),

+FORE(J,29) ,FORE(J,31),FORE(J,35) ,FORE(J,39) -

WRITE(34,741)FORE(J,20) ,FORE(J, 47),FORE(J,48),

+FORE(J,49) ,FORE(J,51) ,FORE(J,55) ,FORE(J,59)

FORMAT(’ ’,7(F8.2,1X))

CONTINUE
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DO 750 J=1,N,1

WRITE(30,751)FORE(J,20), TER(J, 1), -
+ TER(J, 2), TER(J, 3), TER(J, 4), TER(J,

751 FORMAT(' ’,6(F8.2,1X))
750 CONTINUE

END

C***** END OF FORECASTING PROGRAM
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Appendix 1. Sample Hurricane Track Data Base

This is a sample of the best track data matrix used in this research, where each row
represents a 6 hour report. Best tracks are constructed in a careful post-storm analysis that

combines position data from all available sources. Some subjective smoothmg is employed to

plot the best track.

Column 1: Report storm ID (the storm number and the year) For example, the first storm of
1986 would have an ID of 0186.

Column 2: Repbrt DATE (mmdd). For example, if the report was taken on June 16th, the
report DATE would be 0616.

Column 3: Report TIME in Zulu. For example, if the report was taken at midnight Zulu tnme
the report TIME would be 0000.

Column 4: Repdrt latitude (LAT) in north degrees. For example, if at the i'epon the eye of the
hurricane had a latitude of 45.8 north degrees, the report LAT would be 458

Column 5: Report latitude (LON) in west degrees. For example, if at the report the eye of the

“hurricane had a longitude of 88.6 west degrees, the report LON would be 886.

Column 6: Report maximum sustained wind speed (WS) in miles per hour. For example, if at
the report the hurricane had a maximum sustained wind speed of 130 miles per hour, the report
WS would be 130.

A sample of the data:

0186 0608 00352 739 45
0186 0608 06 363 727 45
0186 0608 12379 710 40
0186 0608 18 396 689 35
0286 0623 18256 872 25
0286 0624 00257 878 25
0286 0624 06 260 884 25
0286 0624 12264 889 30
0286 0624 18 266 895 40
0286 0625 00267 903 45
0286 0625 06 268 910 50
0286 0625 12272 917 55
0286 0625 18277 922 65
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